
Improving RRB-Tree Performance through
Transience

A master dissertation presented by

Jean Niklas L’orange

in partial fulfillment of the requirements for the degree of Master of
Science.

Supervisor: Magnus Lie Hetland

Department of Computer and Information Science
Norwegian University of Science and Technology

June, 2014

Copyright © Jean Niklas L’orange, 2014
This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

Trees sprout up just about everywhere in computer science. . .
— Donald Knuth

Abstract
The RRB-tree is a confluently persistent data structure based on the persis-
tent vector, with efficient concatenation and slicing, and effectively constant
time indexing, updates and iteration. Although efficient appends have been
discussed, they have not been properly studied.

This thesis formally describes the persistent vector and the RRB-tree, and
presents three optimisations for the RRB-tree which have been successfully
used in the persistent vector. The differences between the implementations
are discussed, and the performance is measured. To measure the perfor-
mance, the C library librrb is implemented with the proposed optimisations.

Results shows that the optimisations improves the append performance of
the RRB-tree considerably, and suggests that its performance is comparable
to mutable array lists in certain situations.

Sammendrag
RRB-treet er en sammenflytende persistent datastruktur basert på persis-
tente vektorer, med effektiv konkatenering og kutting, og effektivt konstant
tid indeksering, oppdatering og iterasjon. Selv om effektive tilføyinger på
enden av et RRB-tre har blitt diskutert, har de ikke blitt studert nærmere.

Denne oppgaven beskriver den persistente vektoren og RRB-treet formelt,
og presenterer tre optimaliseringer for RRB-treet som har blitt brukt vel-
lykket i den persistente vektoren. Forskjeller mellom implementasjonene er
diskutert, og ytelsen er målt. For å måle ytelsen har C-biblioteket librrb blitt
implementert med de foreslåtte optimaliseringene.

Målinger viser at optimaliseringene øker ytelsen på tilføyinger i RRB-treet
drastisk, og at dens ytelse er sammenlignbar med muterbare arraylister i
visse situasjoner.

a

Acknowledgements

First and foremost, I would like to express my sincere gratitude to Magnus
Lie Hetland and Ole Edsberg for their support and guidance during my work
on this master’s thesis. I find it hard to imagine I would be as motivated
to work on this topic without the excellent lectures they have provided in
Algorithms and Data Structures and Algorithm Construction.

I would also like to thank my fellow students Christer Bru and Vegard
Edvardsen for the participation in numerous programming contests with
our team 2b||!2b, discussions on how to solve different theorems, and the
long nights we have spent in the lab together.

I thank my family for their endless love and encouragement.

Last but not the least, thank you Caroline, for always being there for me.

c

Contents

Abstract a

Acknowledgements c

Contents i

List of Figures iv

List of Listings v

List of Tables v

1 Introduction 1
1.1 Motivation . 1
1.2 Terminology . 1
1.3 Purpose . 2
1.4 Organisation . 3

I Background 4

2 Persistent Vectors 5
2.1 History . 5
2.2 Introduction . 6
2.3 Radix Access . 10
2.4 Update . 11
2.5 Append . 13
2.6 Pop . 14
2.7 Tail . 16
2.8 Display . 19
2.9 Performance . 22

i

3 RRB-Trees 31
3.1 Introduction . 31
3.2 Relaxed Radix Access . 36
3.3 Update . 38
3.4 Concatenation . 39
3.5 Slicing . 47
3.6 Performance . 48

4 Transience 50
4.1 Definition . 50
4.2 Implementation . 53
4.3 Performance . 55
4.4 Related Work . 56

II Methodology 58

5 Direct Append 59
5.1 Introduction . 59
5.2 Implementation . 60
5.3 Direct Pop . 61
5.4 Performance . 62
5.5 Further Optimisations . 62

6 RRB-tree Tail 64
6.1 Implementation . 64
6.2 Interference with Direct Append . 65
6.3 Display . 70
6.4 Performance . 70

7 RRB-tree Transience 71
7.1 Introduction . 71
7.2 Implementation . 72

8 librrb and pgrep 74
8.1 librrb . 74
8.2 pgrep . 77

III Results, Discussion and Conclusion 80

9 Results and Discussion 81
9.1 Practical . 81
9.2 Append Time . 82
9.3 Concatenation Time . 86
9.4 Overall Time . 90
9.5 Memory Usage . 92

10 Conclusion 97
10.1 Future Work . 97

IV Appendices 99

A Additional Functions 100
A.1 Concatenation Functions . 100
A.2 Direct Append Helper Functions . 102
A.3 Direct Pop . 104

B Search Terms 105

C Additional Plots 106

D librrb Installation and Use 107
D.1 Setup . 107
D.2 Options . 107
D.3 Interface . 108

Bibliography 112

List of Figures

2.1 Persistent vector illustration . 7
2.2 Persistent vector operations . 12
2.3 Persistent vector pop and tail . 17
2.4 No display vs. display . 19
2.5 Plot of h(P) for different M. 23
2.6 Overhead ratio for different M. 28
2.7 Persistent vector indexing and update times. 29
3.1 Redistribution of nodes. 34
3.2 Trie containing size tables. 36
4.1 Transient vectors. 54
5.1 Direct appending . 60
6.1 RRB-trees breaking and satisfying tail invariant 67
7.1 RRB-tree with tail and transient . 73
8.1 Different computation stages in the parallel grep implementation. . . 77
8.2 A parallel concatenation with P = 8 threads. 78
9.1 Time used in line search phase . 83
9.2 Total time used in search filtering phase 84
9.3 Branching factor effects on line search phase 86
9.4 Branching factor effects on search filter phase 87
9.5 RRB-tree concatenation time . 88
9.6 Concatenation time with array . 88
9.7 Branching factor effects on concatenation 89
9.8 Total running time for pgrep, excluding I/O 90
9.9 Branching factor effects on total runtime 91
9.10 Total memory usage for different optimisation permutations. 93
9.11 Memory overhead ratio for different optimisation permutations. . . . 93
9.12 Memory overhead ratio for different branching factors. 96
9.13 Total memory usage for different branching factors. 96
C.1 Box-and-whisker plot for concatenation phase. 106

iv

List of Listings

2.1 Implementation of PVEC-LOOKUP. 10
2.2 Improved implementation of PVEC-LOOKUP. 11
2.3 Implementation of UPDATE. 12
2.4 Implementation of APPEND. 13
2.5 Implementation of POP. 16
2.6 Implementation of UPDATE, using a display. 20
3.1 Relaxed radix search. 37
3.2 RRB-tree update. 38
3.3 Algorithm to create a concatenation plan. 43
4.1 CLONE function used in transients. 53
4.2 Transient usage in Clojure . 56
5.1 RRB-PUSH using direct appending . 61
6.1 Code in RRB-CONCAT to satisfy RRB tail invariant. 68
8.1 Example of manual loop unrolling 75
8.2 Concatenation algorithm. 79
A.1 CONCAT-SUB-TRIE. 100
A.2 Rebalancing algorithm for RRB-CONCAT. 101
A.3 Implementation of COPYABLE-COUNT. 102
A.4 Implementation of COPY-FIRST-K. 103
A.5 Implementation of APPEND-EMPTY. 103
A.6 RRB-POP using direct popping . 104
D.1 Shell commands for system setup. 108

List of Tables

2.1 Time complexity of persistent vector operations. 30
3.1 Time complexity of RRB-tree operations. 49
9.1 Line search times . 82
9.2 Search filter time for 1.5 million matches 85
9.3 Total runtime for 1.5 million matches 91
9.4 Branching factors and memory usage. 95
B.1 List of search terms . 105
D.1 List of configurable options . 109

v

CHAPTER 1

Introduction

1.1 Motivation

With more and more multi-core systems, programmers have to manage more com-
plex environments than previously. Immutable data structures give programmers
a tool that is easy to reason around. In addition, they enhance the power of other
tools able to cope with the increased complexity, for example software transactional
memory[1] and functional programming languages. In many cases, however, the
increased overhead of immutable structures compared to mutable structures makes
them unattractive for parallelisation and performance-based programs.

Parallel processing of lists is generally easy, with options easily available for the JVM
and C/C++. The Fork/Join framework[2] is available for programmers using the
JVM, whereas MPI and OpenMP is available for C/C++ developers. If none of these
are available, it is usually not difficult to implement a parallel processing task with
threads, albeit with an inferior scheduling algorithm compared to the frameworks
mentioned above. However, efficient parallel processing of lists where the size of
the output list is not known in advance require concatenation, a task that is hard to
perform efficiently without paying performance penalties on other operations.

The recently designed Relaxed Radix Balanced Tree (RRB-Tree) by Bagwell and
Rompf [3] attempts to be an efficient immutable data structure for parallel processing,
and extends the persistent vector implementation from the Clojure programming
language[4]. RRB-Trees maintain the near constant time costs of updates and indexing,
while providing efficient concatenation and splits. However, the paper does not assess
the need for concatenation and splits, in contrast to more efficient appends, updates
and indexing. Additionally, the paper discusses constant time additions through a
tail, but it does not specify how to efficiently insert the tail into the RRB-tree itself.

1.2 Terminology

This thesis uses a different notion of the word persistence than commonly used in
computer science: Rather than meaning something which is stored in persistent

1

1.3 Purpose 2

storage, persistence/persistent data structures refer to data structures that always
preserve their original version when “updated”.

An immutable data structure is a data structure that does not change its contents
after creation. Allowing mutability during creation is sometimes considered to be
effectively immutable. Although the data structures covered in this thesis are usually
implemented that way, we will not distinguish between these terms.

The term mutable refers to data structures which has an identity with a certain state
at a specified point in time. All functions modifying this structure take the identity
and additional arguments, and modify the current state. Driscoll et al. uses the term
ephemeral to refer to these structures[5].

The term transience/transient refers to a different class of data structures, which is
further explained in Chapter 4. It is not related to the definition in Scala/Java, which
is used to indicate that a class field is not part of the persistent state (within the
context of persistent storage) of an object.

Although � and � are usually used to denote much less than and much greater
than, we will in this thesis use those symbols for the bitshift operations “shift left”
(SHL) and “shift right” (SHR).

NIL represents the absence of a value: This is commonly known as the null pointer in
Java, C and C++, or Nothing in the Maybe monad in Haskell.

In algorithms, the iteration “for i← a to b” means that the iteration is done from
a up to and including b, incrementing i by one for each step. The iteration “for
i← a downto b” means that the iteration is done from a down to and including b,
decrementing i by one for each step. If the additional keyword by is included, then
the variable iterated over is decremented or incremented by the following value.

The expressions Ti and T[i] are equivalent, and denote the ith element in the array T
or slot entry in the trie node T. The expression Ti[j] denotes the jth entry in Ti. |P|
refers to the length of a trie, vector or RRB-tree.

In garbage collected programming environments, memory leaks may only happen as
a result of bugs in the environment or garbage collector. However, data structures
may retain pointers to data which can never be accessed by a running program. The
data such pointers point to is called semantic garbage.

1.3 Purpose

The purpose of this thesis is threefold: First and foremost, it attempts to improve
appending for RRB-trees in order to make it a reasonable data structure to use for
parallel programming. We assume that three ideas from the persistent vector may
result in considerable speed increases:

1.4 Organisation 3

1. Direct appending

2. Tails

3. Transience

Second, as the persistent vector has not been properly described in an academic
context, an attempt to formalise and prove runtimes analytically is done. Additionally,
claims by Bagwell and Rompf on the runtime of the RRB-tree are studied analytically.
A consequence of this is that the background chapters may be somewhat longer and
more detailed than what is considered usual.

Finally, the RRB-tree is implemented as a C library for two reasons: To make it
easier for future data structure developers to have some easily available reference
implementation in a well-known programming language, and to make the data
structure available in programming languages that are able to use C libraries.

1.4 Organisation

This thesis consists of three parts: The background part, the methodology part, and
the result part. The background part consists of three chapters: Chapter 2 describes
in detail the persistent vector, which the RRB-tree is based upon. Chapter 3 describes
the RRB-tree, operations on it and its performance compared to the persistent vector.
Chapter 4 describes transience a category of effectively immutable data structures
that do not “persist”.

The methodology part consists of four chapters, one for each optimisation, and one
for the implementation. Chapter 5 describes direct append, an algorithm which
inserts elements directly into the RRB-tree. Chapter 6 explains how one adds a tail
to the RRB-tree, and how the original RRB-tree algorithms must change to preserve
correctness. Chapter 7 elaborates on how transient RRB-trees can be implemented.
Chapter 8 explains the implementation of the RRB-tree library librrb, along with the
benchmark program pgrep.

The result part consists of two chapters: Chapter 9, which contains results of bench-
marks, along with a discussion, and Chapter 10, which concludes this thesis and
presents future work.

Part I

Background

4

CHAPTER 2

Persistent Vectors

2.1 History

Functional programming language researchers have continuously studied immutable
data structures, in order to try to improve their performance. Finding a good data
structure with similar performance guarantees as mutable, growable arrays has been
of particular interest, but this has proven to be a hard problem. Using the well known
singly linked list gives good performance for operations modifying the head of the
list, but worst case O (n) time for random access and modification. On the other
hand, using an immutable array gives optimal random access time, but Θ(n) time
for removal, insertions and updates. Additionally, every update requires a new array
to be stored in memory, which is costly.

Okasaki attempts to solve this problem through random-access lists[6]. The structure
provides lookup and update operations in O (logn) time, while retaining O (1) time
for the common singly linked list operations first, rest and cons. Bagwell also
attempts to solve this problem with VLists[7]. In contrast to Okasaki’s random-access
lists, the VList focuses more on practical considerations, and attempts to reduce both
cache misses and space usage, while providing O (n) time for update, O (logn) access
time and O (1) for the singly linked list operations. Both of these have their use cases,
but have in general been superseded by the persistent vector implementation first
provided in the programming language Clojure. The persistent vector is a bit-array
mapped trie, where the branching factor is very high. As a result, the trie trees are
incredibly shallow, and whereas operations on the tree is in theory O (log32 n), they
are effectively constant time as the tree will never have a height over 7.

The persistent vector was pioneered by Rich Hickey in July 2007 for the programming
language Clojure, influenced by Bagwell’s paper Ideal Hash Trees[8]. Initially, the
persistent vector functions were not optimised, and consisted only of access, updates,
pop and insertions. In March 2008, Hickey invented the tail, claiming to improve
bulk insertion and removal times with a factor of around 2 to 5[9]. In August 2009,
the notion of transience was introduced to the structure, providing even faster bulk
operations, with a factor of about 10 in specific cases[10].

5

2.2 Introduction 6

In September 2009 Tiark Rompf implemented the initial implementation of the
immutable vectors in Scala, first available in version 2.8.0. The notion of a focus and
display were invented for this implementation, created as an attempt to further reduce
cache misses. The implementation also has a faster insertion algorithm for inserting at
the front of the vector. In contrast to the persistent vector implementation in Clojure,
Scala’s implementation does not provide transients as of this writing. Implementations
of the persistent vector also exist for Factor1, Java2, Haskell3 JavaScript4, and other
languages.

2.2 Introduction
A persistent vector P is an immutable variant of an M-way branching radix trie, using
element indices as keys. For a refresher on tries, see Knuth [11, pp. 492-507]. As the
persistent vector trie differs somewhat from a normal trie, the structural differences
will first be explained briefly. To elaborate and prove the performance characteristics
of the persistent vector, a more formal definition along with informal explanations
will be given afterwards.

A trie used in a persistent vector can either be a leaf node or an internal node. Internal
nodes only contain table entries to other tries, and leaf nodes only contain table
entries to elements in the vector. Both type of nodes will contain at least one table
entry, and at most M table entries: The only exception is the empty trie, which is a
single leaf node containing zero table entries. The amount of table entries for a trie
node T is denoted ‖T‖, and table entries are looked up by an integer from 0 to M− 1.
The trie nodes we will work with are contiguous, meaning that if the table entry i
exists and is not 0, then table entry i− 1 also exists. In addition, if a trie has a sibling
on its right hand side, then this trie has to be fully populated. Finally, all leaf nodes in
a persistent vector will be at the same level, which means we have to walk through
the same amount of nodes before we can return or update the value asked for.

Figure 2.1 visualises such a vector P with a branching factor of M = 2. The vector
contains the values 1, 2, 3, 4 and 5 in that order. The top structure contains the size
of the vector (5), along with its shift (4) and a pointer to the trie root, denoted Proot.
The shift is an optimised way to denote the height of the trie for specific persistent
vectors, and will be explained in detail later.

These properties are captured formally by the definition of a leftwise dense persistent
vector, which depend on the definition of a trie’s height and a fully dense persistent
vector:

Definition 2.1. The height of any trie T is defined as:

h(T) = 0 if T is a leaf node
∀ 0 < i < ‖T‖ , h(T) = h(Ti) + 1 if T is not a leaf node

1http://factorcode.org/
2https://github.com/krukow/clj-ds
3https://hackage.haskell.org/package/persistent-vector
4http://swannodette.github.io/mori/

http://factorcode.org/
https://github.com/krukow/clj-ds
https://hackage.haskell.org/package/persistent-vector
http://swannodette.github.io/mori/

2.2 Introduction 7

1 2 3 4 5

5 4

Figure 2.1: Persistent vector illustration

The height of a persistent vector P is the height of its root trie: h(P) = h(Proot).

From Definition 2.1, it follows that leaves in a persistent vector P will only exist
exactly h(P) search steps away from the root of the trie.

Definition 2.2. Let dfull(T) denote that the trie T is fully dense. An M-way branching
trie T containing type τ is fully dense if and only if ‖T‖ = M and

M∧
i=0

Ti : τ if h(T) = 0

M∧
i=0

dfull(Ti) if h(T) 6= 0

Definition 2.3. Let dleft(T) denote that the trie T is leftwise dense. An M-way branch-
ing trie T containing type τ is leftwise dense if and only if 0 < ‖T‖ 6 M and

‖T‖∧
i=0

Ti : τ if h(T) = 0(‖T‖−1∧
i=0

dfull(Ti)

)
∧ dleft(T‖T‖−1) if h(T) 6= 0

If a persistent vector P is leftwise dense, its root trie Proot must be leftwise dense, and
either h(P) = 0 or 1 < ‖Proot‖ must be satisfied.

2.2 Introduction 8

Informally, this means that all the nodes in a leftwise dense persistent vector will
always be fully dense, excluding the rightmost nodes. The additional root constraint
ensures that the height of a persistent vector always will be minimal.

It is possible to relax the leftwise density constraint, but we will not focus on such
implementations and its implications in this thesis. Therefore, a vector will from now
on be considered to be a leftwise dense vector unless otherwise noted.

While these definitions are sufficient to ensure that the persistent vector is structurally
correct, they do not convey any relation between the height and size. This is essential
in order to reason around the performance characteristics of a persistent vector. The
following definitions and theorems prove that h(P) ∈ Θ(logM |P|).

Definition 2.4. The size of any trie T is defined as:

|T| = ‖T‖ if T is a leaf node

|T| =
‖T‖∑
i=0

|Ti| if T is not a leaf node

The size of a persistent vector P is the size of its root trie: |P| = |Proot|.

Note that ‖T‖ is the amount of table entries in a trie, whereas |T| refers to the total
elements contained in T.

Theorem 2.1. If dfull(T), then |T| = Mh(T)+1.

Proof. For h(T) = 0, |T| = Mh(T)+1 = M0+1 = M, as by Definition 2.2.

Next, assume the theorem is true for heights 6 k = h(T′). We must prove that the
hypothesis holds for k+ 1 = h(T).

The theorem is true (by the inductive hypothesis) for all the subtries 0 < Ti < M,
since they have the height h(Ti) = h(T) − 1 = k by Definition 2.1. As this trie is not
a leaf node, the total size of the trie is

|T| =
M∑
i=0

|Ti| =
M∑
i=0

Mh(Ti)+1

= M ×Mh(T)

= Mh(T)+1

Corollary 2.1. If dfull(T), then h(T) = logM(|T|) − 1.

Proof. This follows from the logarithmic definition

|T| = Mh(T)+1 ⇔ h(T) + 1 = logM(|T|)

2.2 Introduction 9

Additionally, we define the capacity of a vector as follows:

Definition 2.5. The maximal capacity of a leftwise dense trie T is

cap(T) = Mh(T)+1

A leftwise dense vector may only increase its height when we insert elements. This
happens when the original vector size is equal to its maximal capacity, |P| = cap(P),
in which it will be fully dense.

Given Theorem 2.1, we can now define a relation between the length of a leftwise
dense persistent vector and its height:

Theorem 2.2. Given a leftwise dense persistent vector P,

h(P) = 0 if |P| 6 M

h(P) = dlogM(|P|)e− 1 if M < |P|

Proof. For |P| 6 M, all elements will be placed inside a single leaf node Proot, which
satisfies Definition 2.1. The theorem is therefore true for 0 6 |P| 6 M.

Next, assume Mk < |P| 6 Mk+1, k > 0. Because M < |P|, h(P) > 0, the root node
T = Proot must satisfy the property 1 < |T| from Definition 2.3. It follows that
dfull(T0). From Corollary 2.1, we have that

h(T0) = logM(|T0|) − 1

and as h(T0) = h(T) − 1 from Definition 2.1, h(T) = logM(|T0|). It is evident that
|T0| = Mk, consequently h(T) = k.

The minimum value of |P| is Mk + 1, and the maxium value is Mk+1. As

dlogM(M
k + 1)e− 1 = dlogM(M

k+1)e− 1 = k

and as dlogM(x)e is monotonic, it follows that

h(P) = dlogM(|P|)e− 1

for all Mk < |P| 6 Mk+1.

Corollary 2.2. h(P) = dlogM(|P|)e− 1 ∈ Θ(logM(|P|))

Proof. This is evident from the definition of Θ.

2.3 Radix Access 10

2.3 Radix Access

The path down to a single element in a persistent vector is calculated through its
index. The search step is similar to the big-endian binary tries in [12], but the
branching factor is M instead of 2: For each node T, the table entry to continue
walking is i′ =

⌊
i

Mh(T)

⌋
mod M, until we have found the value. Listing 2.1 represents

a more efficient algorithm which returns the same result. It utilises the fact that
Mh(T)

M = Mh(T)−1 to avoid recomputing powers of M. Assuming we store Mh(T) in
the vector head, the lookup still has to perform h(P) modulo operations and 2h(P)
integer divisions, which are relatively costly assembly operations.

1 function PVEC-LOOKUP(P, i)
2 T ← Proot
3 d← Mh(T)

4 for h← h(T) downto 0 do
5 i′ ←

⌊
i
d

⌋
mod M

6 T ← Ti′
7 d← d

M
8 end for
9 return T . T is element here
10 end function

Listing 2.1: Implementation of PVEC-LOOKUP.

However, a more efficient version exists if we constrain M. Recall the identities for
the bit operations�,� and &:

Corollary 2.3. a� c = a× 2c

Corollary 2.4. a� c =
⌊
a
2c

⌋
Corollary 2.5. a & (M − 1) = a mod M

where M = 2b for some integer b > 0. We can therefore reformulate the formula for
i′ as follows:

i′ =

⌊
i

Mh(T)

⌋
mod M

=

⌊
i

2b×h(T)

⌋
mod 2b

=

⌊
i

2b×h(T)

⌋
& (2b − 1) by Corollary 2.5

= (i� (b× h(T))) & (M − 1) by Corollary 2.4

(2.1)

While general integer division, modulo and exponentiation performance has improved
over the years, bitshift operations make division, modulo and exponentiation with

2.4 Update 11

powers of 2 still significantly more efficient than integers that are not a power of 2
[13]. M is therefore usually a power of two for performance reasons.

As an example of a lookup using the formula, consider a case where b = 5 and
M = 25 with the vector P. Assume h(P) = 2, which implies Mh(P) = M2 = 210 < |P|,
and that we want to look up i = 70310 in P. It is possible to visualise the lookup as
partitions of 5 and 5 bits, as shown in Equation (2.2).

i = 70310 =

binary representation︷ ︸︸ ︷
00000︸ ︷︷ ︸
i2

10101︸ ︷︷ ︸
i1

11111︸ ︷︷ ︸
i0

2 (2.2)

Now, for each trie T, we walk down table entry ih(T). Calculating the table entry ih(T)

is done through (2.1). Assuming we can calculate the shift calculation s(T) = b×h(T),
i’s shift for trie T, efficiently, this new formula would require few expensive operations
compared to the original radix access algorithm. In Equation (2.2), we would first
walk table entry 0, then 21 and finally the element at index 31.

By realising that s(Tj) = s(T) − b for all 0 < j 6 ‖T‖ and that h(T′) = 0 =⇒
s(T′) = 0, we can avoid storing the height of the root trie and store its shift instead.
Applying these new ideas, we can improve the radix access implementation in Listing
2.1 to the bitwise access implementation presented in Listing 2.2.

1 function PVEC-LOOKUP(P, i)
2 T ← Proot
3 for s′ ← s(T) downto 0 by b do
4 i′ ← (i� s′) & (M − 1)
5 T ← Ti′
6 end for
7 return T . T is element here
8 end function

Listing 2.2: Improved implementation of PVEC-LOOKUP, given M = 2b.

It is also possible to remove calculation overhead through loop unrolling. As all
operations performed at height h is also performed at height h− 1, we can represent
the branching loop as a switch statement. In a switch statement, hmax would be
the first case, hmax − 1 the second case and so on. The last case, h = 0, might need
special treatment as its return value would be of type τ, not a subtrie.

As every lookup require h(T) search steps, the time complexity to lookup any value
in a vector is Θ(logM n) where n = |T|.

2.4 Update
Replacing the element at index i in the vector P is done through path copying: copying
all nodes affected by the update. The trie is traversed as by Listing 2.1, but at each

2.4 Update 12

1 2 3 4 5 6F 4

6 64 4

(a) Persistent vector update

1 2 3 4 5

4 2

5 4

(b) Persistent vector append

Figure 2.2: Persistent vector operations

step, we perform a shallow copy of the node we need to walk to avoid modifying
the original vector. Sarnak and Tarjan coined the term path copying and discuss it in
[14].

Using Listing 2.1 as a basis for the update function, we can implement update as
presented in Listing 2.3. The bit optimisations in previous section can of course be
applied to improve performance.

1 function UPDATE(P, i, val)
2 P′ ← CLONE(P)
3 T ← CLONE(Proot)
4 P′root ← T
5 d← Mh(T)

6 for h← h(P′) downto 1 do
7 i′ ←

⌊
i

Mh

⌋
mod M

8 Ti′ ← CLONE(Ti′)
9 T ← Ti′
10 end for
11 i′ ← i mod M
12 Ti′ ← val
13 return P′

14 end function

Listing 2.3: Implementation of UPDATE.

Figure 2.2a shows two vectors with a branching factor of M = 2. The left vector
contains the elements [1, 2, 3, 4, 5, 6], whereas the right vector is an updated
version, replacing 3 with F. We can see that, in contrast to a full copy of a structure,
only h(P) nodes are copied, and most of the data, including internal nodes, is shared.

Except for the path copying, an update is equivalent to a lookup. Assume that a single

2.5 Append 13

copy requires O (M) time, and that a copy has to be done at each search step. An
update therefore requires O (M logM(n)) time to run.

2.5 Append

Inserting a new element in a vector P is easiest described as an update where i = |P|,
and where we create empty nodes when the node to walk is NIL. In addition, we have
to increase the height if the vector is fully dense, by creating a new root node.

1 function APPEND(P, val)
2 P′ ← CLONE(P)
3 i← |P|
4 |P′|← |P|+ 1
5 if dfull(Proot) then
6 n← CREATE-INTERNAL-NODE()
7 n0 ← Proot
8 P′root ← n

9 h(P′)← h(P) + 1
10 else
11 P′root ← CLONE(Proot)
12 end if
13 T ← P′root
14 for h← h(P′) downto 1 do
15 i′ ←

⌊
i

Mh

⌋
mod M

16 Ti′ ← CLONE-OR-CREATE(Ti′) . Creates empty node if Ti′ = NIL

17 T ← Ti′
18 end for
19 i′ ← i mod M
20 Ti′ ← val
21 return P′

22 end function

Listing 2.4: Implementation of APPEND.

In the worst case, we have |P| = cap(P) − 1. In that case, we have to copy h(P) nodes
of size M. If dfull(P), we have to perform h(P) + 2 node creations. This gives us a
time complexity of O (M logM(n)), the same runtime as updates.

While Listing 2.4 presents a rather straightforward implementation, it does not
explain how we detect dfull(P) efficiently. Assuming that the vector head contains
its height, h(P), we can check whether its current size is equal to Mh(P)+1, from
Theorem 2.1. The same idea applies when M = 2b, but we can use the more efficient
1� (s(P) + b) = M � s(P) by using Corollary 2.3.

2.6 Pop 14

2.6 Pop

Whereas the append algorithm creates new nodes whenever the radix search attempts
to walk a node which is NIL, the pop algorithm removes completely empty nodes
from the new vector. Additionally, to ensure that the new vector is leftwise dense,
the root node is replaced with its child if it only has a single child. By doing so, we
ensure that the height is minimal.

A naïve first attempt might start by walking down the index i = |P′| = |P|− 1 down
until it has reached the leaf node and removed the last element. It then recursively
returns the newly created node to its parent, or return NIL if the node is completely
empty. Finally, it checks that the root node’s second child is not equal to NIL, and if it
is, the root is replaced with its child.

An improved solution realises that the new size can be used to avoid walking parts of
the trie. Namely, the following tricks can be used:

1. If the new size is Mh(P), the height of the new trie is reduced by one.

2. If all the remaining search steps to walk are though table entry 0, short- circuit
the walk and return NIL.

1. is evident: It is easy to show that the only vector with size Mh(P) is a fully dense
trie of height h(P) − 1. From this, we easily realise that the new vector root will be
the the first child of the original vector.

1. is a special case of 2., in which one has to shorten the trie height in addition to
short-circuit. 2. avoids the additional jumps down the trie even when the height is
not changing, and as such avoids unneeded work.

To see why 2. holds, assume the last n search steps indices are zero, and that the
n + 1th to last search step index is > 0. The element to remove in the leaf node
has index 0. As P is leftwise dense, there are no elements right of this element.
Consequently, the leaf node will be empty and we will therefore return NIL. The same
logic applies for the level above: NIL will be placed at index 0, meaning that this node
is empty, and we return NIL. This is repeated until we reach the level where we are
not replacing the new path at index 0, which is the n+ 1th to last search step.

The remaining question is then how one efficiently calculates that the remaining n
steps all are through table entry 0. This is shown in the following theorem:

Theorem 2.3. For any non-negative integers n, h and positive integer M,

h

∀
i=0

⌊ n
Mi

⌋
mod M = 0⇔ n mod Mh+1 = 0

2.6 Pop 15

Proof. Let

n =

∞∑
i=0

miMi

where all mi are non-negative integers less than M. Then

n mod Mh+1 =

h∑
i=0

miMi (POP-MOD)

and ⌊ n
Mj

⌋
=

∞∑
i=0

m(i+j)Mi (POP-QUOT)

By (POP-MOD) and (POP-QUOT), we then get⌊ n
Mj

⌋
mod M = mj (POP-PART)

therefore
h

∀
i=0

⌊ n
Mi

⌋
mod M = 0⇔

h

∀
i=0
mi = 0

Additionally, we get that

n mod Mh+1 =

h∑
i=0

miMi = 0⇔
h

∀
i=0
mi = 0

as all mi must be zero for its modulus to be zero.

Through substitution, we then get

h

∀
i=0

⌊ n
Mi

⌋
mod M = 0⇔ n mod Mh+1 = 0

By Theorem 2.3, we see that we only have to check

(|P|− 1) mod Mh(T)+1 = 0

to confirm whether the subtrie T and all its children will all walk table entry 0,
and thus return NIL. We can therefore short-circuit if this happens, and we avoid
walking the trie. By using the binary ideas from Section 2.3, we can convert this to
the expression

(|P|− 1)& ((2M � s(T)) − 1)

Figure 2.3a presents a normal vector pop, where only the leaf node is modified and
the path down to it is copied. It is tempting to visualise a tree where the height
changes, but such a figure would be equivalent to Figure 2.2b and is therefore not
included.

2.7 Tail 16

1 function POP(P)
2 P′ ← CLONE(P)
3 i← |P|− 1
4 |P′|← |P|− 1
5 if |P′| = Mh(P) and |P′| 6= 1 then
6 h(P′)← h(P) − 1
7 P′root ← Proot[0]
8 else
9 P′root ← CLONE(Proot)
10 T ← P′root
11 for h← h(P′) downto 0 do
12 i′ ←

⌊
i

Mh

⌋
mod M

13 if |P′| mod Mh = 0 then . Child will return NIL

14 Ti′ ← NIL

15 return P′

16 end if
17 Ti′ ← CLONE(Ti′)
18 T ← Ti′
19 end for
20 end if
21 return P′

22 end function

Listing 2.5: Implementation of POP.

2.7 Tail

While the persistent vector focuses on efficient random access operations, many
operations work around the end of a vector. A considerable amount of tasks also
perform operations in bulks. Examples include sorting, shuffling, reversing and
concatenation. Additionally, reading and removing the last elements of a vector
happens more frequently in some use cases. For example, stacks pop, peek and push
the last element in a vector implementation.

For this reason, the vector head contains a pointer to a leaf node, called a tail. Figure
2.3b shows the vector represented in Figure 2.1 with a tail. Whenever an element is
inserted at the end of the vector, it is inserted into the tail. If the tail is full (its size
equal to M), it is inserted into the actual trie, and the element is inserted into a new
leaf node, which replaces the old tail. The same happens when we remove elements:
If the tail is empty after a removal, it is replaced with the rightmost leaf node in the
trie.

Are there any specific benefits by always keeping the tail nonempty? There is a notable
one: The function last will always take constant time, as it will always be able to
lookup in the tail. Another one, albeit insignificant, is that the average lookup time for
a random access operation decreases: There is a higher chance of picking an element

2.7 Tail 17

1 2 3 4 5 6

6 4 5 4

5

(a) Persistent vector pop

1 2 3 4

55 4

(b) Persistent vector with tail

Figure 2.3: Persistent vector pop and tail illustration

in the tail when the tail is guaranteed nonempty. However, if last is rarely used, one
could consider inserting the tail when it became full: Calculations revolving tail size
and tail offset are somewhat easier to reason about, with fewer special cases. For
performance reasons, we will in this thesis assume that a tail Ptail will always satisfy
0 < |Ptail| 6 M, except when |P| = 0, in which |Ptail| = 0.

At first sight, we may assume that the tail’s length has to be stored somewhere to
identify whether operations has to work on the tail or on the trie. However, there
is no need to keep track of the size of the tail in a leftwise dense persistent vector.
As the vector is leftwise dense, only the rightmost leaf node, the tail, is allowed to
not be completely filled. This means that all other leaf nodes will contain exactly M
elements. The simple expression

|P| mod M

will therefore return the size of the tail, or 0 if the tail is completely filled.

To avoid casting 0 back to 32, we can subtract by one, then add one after the modulo:

|Ptail| = (|P|− 1 mod M) + 1

This formula works fine, with the exception when |P| = 0. In that case, the tail’s
length is |Ptail| = 0.

Another important value is the tail’s offset index. This is needed if we want to know
whether a certain index refers to a value in the trie or in the tail. It is defined as the
size of the vector minus its tail length:

|P|− |Ptail| = |P|− (|P|− 1 mod M) − 1

= (|P|− 1) − ((|P|− 1) mod M)

2.7 Tail 18

For M = 2k, we can use Theorem 2.4 to further simplify the expression:

(|P|− 1) − ((|P|− 1) mod M) = (|P|− 1) − ((|P|− 1)&M − 1)

= (|P|− 1)&¬(M − 1)

where ¬ is the binary NOT operation.

Theorem 2.4.
a− (a&b) = a&¬b

Proof. We know that
a− a = a⊕ a = 0

where ⊕ is the binary XOR operation. Additionally, we can show that

a− (a&b) = a⊕ (a&b)

To see why, realise that a binary subtraction will only cause a carry if and only if
the first binary digit is 0, and the second binary digit is 1. This will never happen in
a− a, as whenever the first binary digit is 0, the second binary digit must also be 0.
Performing the operation a− (a&b) does not change this fact. Consequently, only
the binary calculations 1 − 1, 1 − 0 or 0 − 0 can occur in the subtraction a− (a&b).
As a⊕ ¬a = 1 and a⊕ a = 0, we can therefore replace subtraction with the XOR
operation for this formula.

The remaining part can be proven through enumeration, shown in the truth table
below.

a b ¬b a&b a⊕ (a&b) a&¬b
0 0 1 0 0 0
0 1 0 0 0 0
1 0 1 0 1 1
1 1 0 1 0 0

One of the good things with the tail is that the previously implemented algorithms
does not need to be heavily modified: Updating and indexing only has to check
whether the tail is involved, which is done by the tail offset calculation. If it is, we
only have to read or update the tail. Reading from the tail is done in constant time,
Θ(1), and writing is linear to the length of the tail, O (M).

For appending, we check whether the tail is full. If it is, the tail is pushed down in
the same fashion we append a single element. Otherwise, the algorithm only has to
copy the tail and insert the element. Amortised then, the runtime is

2.8 Display 19

1 2 3 4 F 6

9 6

7 8 9

(a) Persistent vector without display

1 2 3 4F 6

6 4

7 8 9

...9

(b) Persistent vector with display

Figure 2.4: No display vs. display

Θ

(
M
M

logM(|P|) +
M(M − 1)

M

)
= Θ(logM(|P|)

as, for every M operations, M − 1 operations will take O (M) time, and 1 will take
Θ(M logM |P|) time.

Popping works in a similar way: When 1 < |Ptail|, we can simply copy and remove
the last element from the tail. Otherwise, we have to promote the rightmost leaf node
in the trie as a new tail, in order to ensure |Ptail| is positive. Whereas creating the
new path could take Ω(1) time by the calculations from Section 2.6, we must always
walk down to the leaf node to get the new tail. Consequently, the total amortised
runtime for popping is the same as appending.

While the tail does not change the worst case asymptotic runtime, the constant factor
for these operations on are average considerably decreased for values of M that are
reasonably large.

2.8 Display

Scala’s immutable vector implementation has taken the concept of a tail and gener-
alised the notion to what is called a focus[3]. Instead of only considering the end of a
vector, the focus tracks the leaf node which was last updated. The rationale for this
generalisation is due to the principle of spatial locality: If an element is either read
or written, then it is likely that future operations on the vector will be on elements
very close to the element currently read/written[15].

The focus is only modified when the vector itself is modified. As the vector has to
be thread-safe, we can either keep the focus with a lock, or only change it during
modifications on the vector. Handling a lock per vector is not only time-consuming,
but also increases the complexity of a vector implementation.

2.8 Display 20

To further attempt to improve performance, the focus is kept in a display – a stack with
constant size hmax. The display tracks the path taken down to the focus, allowing
for, on average, efficient lookup in leaf nodes near the focus: Given two leaf nodes,
we can efficiently calculate where the paths to walk first split up, and go directly to
their lowest common ancestor within the display. To avoid semantic garbage, the
pointers from the topmost nodes down through the path is replaced with NIL.

Whenever the path down to the focus is changing, the old path from the lowest
common ancestor down to the leaf node has to be committed back to the ancestor.
The previously written NIL at level n is replaced with the old display node at level
n− 1, all up to the lowest common ancestor. In the worst case, h(P) nodes may be
copied at this stage.

Figure 2.4 presents the vector [1, 2, 3, 4, F, 6, 7, 8, 9], where F at index
4 was the last value to be changed. As hmax = 16 when M = 2, the display slots
after the fourth level are presented as “. . .” for space reasons. Note that all nodes in
the display lacks a single pointer: The missing pointer is the lower node contained in
the display, as previously mentioned.

1 function UPDATE(P, i, val)
2 P′ ← CLONE(P) . Clones the display D as well
3 j← 0
4 while

⌊
iold
Mj+1

⌋
6=
⌊
i

Mj+1

⌋
do

5 p←
⌊
iold
Mj+1

⌋
mod M

6 Dj+1[p]← CLONE(Dj)
7 j← j+ 1
8 end while
9 for h← j downto 1 do
10 i′ ←

⌊
i

Mh

⌋
mod M

11 Dh ← CLONE(Dh)
12 D′ ← Dh[i′]
13 Dh[i′]← NIL

14 Dh−1 ← D′

15 end for
16 i′ ← i mod M
17 D0 ← CLONE(D0)
18 D0[i

′]← val
19 return P′

20 end function

Listing 2.6: Implementation of UPDATE, using a display.

Listing 2.6 presents the update algorithm when the persistent vector uses a display.
The variable Di refers to the ith level of the display in the newly copied persistent
vector head P′, where i = 0 is the leaf level.

2.8 Display 21

Finding the common ancestor is done by retaining the old index iold which was
updated. As the subindex from each step in the radix search algorithm is independent
from the other steps, finding out whether the current parent T is a common ancestor
is easy: We just have to check that the first n steps are similar. This can be done by
checking ⌊

iold

Mh(T)+1

⌋
=

⌊
i

Mh(T)+1

⌋
if these are not equivalent, we move up a level and continue the process.

How well does a display fare in contrast to a persistent vector with just a tail? For
truly uniformly random updates, a non-display version fares better, as a display would
in the worst case have to commit all but one node, then perform the equivalent of
a path copy down to the node to update. However, a display is better when many
updates happen in localised clusters. There is, of course, no problem to have both
options available and a function to move from one representation to another. However,
neither Clojure nor Scala have an option to switch between representations.

Another convenient use of a “display” is through iteration over the whole or parts
of the vector: We can consider the display as a stack of nodes, where the top of the
stack contains the current leaf node we iterate over, the second element is the leaf
node’s parent, and so on. Not only does the running time of such a solution take
Θ(|P|) proven by Theorem 2.5, but as we do not have to perform any commits – as
nothing is modified – there is no need for memory allocations or copying after the
“display” has been created.

Theorem 2.5. Iterating over a persistent vector P takes Θ(|P|) time.

Proof. Walking down to the first element takes Θ(logM |P|) time. Amortised over |P|
elements, this takes Θ((logM |P|)/ |P|) ∈ O (1) time per element.

By using a display, an iteration step takes constant time if the next iteration element
is within same leaf node. However, for every M iteration steps, we have to change
leaf node, for every M2 iteration steps, we have to change second level node, and so
on. On average, then, each iteration step require us to change

1
M

+
1

M2
+ . . . +

1
Mh(P)+1

=

h(P)+1∑
i=1

1
Mi

=

h(P)∑
i=0

1
Mi+1

blocks in the display. This is a finite geometric series, which expand to

h(P)∑
i=0

1
Mi+1

=
Mh(P)−1

(
M−h(P)+1 − 1

)
M − 1

=
M−dlogM(|P|)e (MdlogM(|P|)e − 1

)
M − 1

=
1 − M−dlogM(|P|)e

M − 1

2.9 Performance 22

Assuming M > 1,

lim
|P|→∞

1 − M−dlogM(|P|)e

M − 1
=

1
M − 1

which tells us that the worst case amortised amount of node replacements in the
display per iteration step is 1/(M − 1), a constant. Consequently, all iteration steps
take on average constant time, and a total iteration therefore takes Θ(|P|) time.

Corollary 2.6. A single iteration step on a persistent vector takes Θ(1) amortised time.

2.9 Performance

In the previous sections, we have found time complexities for all operations with
respect to both M and |P|. However, M is a constant which does not change during
program execution. As a result, one might assume that the asymptotic runtimes
derived could be simplified to not contain M. While this is valid from a theoretical
standpoint, modern computer architectures change the performance characteristics
significantly for different values of M. As a result, the runtimes without respect to
M reflect real world performance relatively poorly. We will look at this aspect of the
persistent vector in this section.

Perhaps the most intuitive difference is copying. Section 2.4 claims that copying
a single trie node T takes O (M) time: Θ(n) when n = ‖T‖. For large values of
M, this is true. However, for small values of M, in which a trie node T with size
‖T‖ = M fits within a single cache line, copying would take roughly the same time
regardless of its size. Consequently, we can claim that copying takes Θ(1) when
Mp + o < cache line size, where p is the size of a pointer, and o is the additional
overhead in a trie node. This also assumes leaf nodes contain elements with a size
less than or equal to a pointer.

The result of this claim is that tail-less versions of update and append now take
Θ(logM |P|) instead of Θ(M logM |P|), similarly for with pop but with O instead of Θ.
Note that, whereas this time complexity is equal to indexing, memory access factors
make indexing considerably faster. Versions of append and pop with a tail has an
amortised time

Θ

(
1
M

logM (|P|) +
M − 1

M

)
= Θ

(
1
M

logM |P|
)

compared to the original amortised time Θ(logM |P|).

While assuming copying is fast for relatively small M, a larger M gives better per-
formance for an operation proportional to logM. Figure 2.5 presents the height of
a vector with different M, showing that M is not negligible in practise: On average,
M = 2 gives a tree roughly 5 times as high compared to M = 32. Preferably, M
should be as large possible while still give the benefits of keeping nodes within a
small number of cache lines.

2.9 Performance 23

0

5

10

15

20

25

30

1 10 102 103 104 105 106 107 108 109

H
ei

gh
t

Vector Size

dlog2(|P|)e
dlog4(|P|)e
dlog8(|P|)e
dlog16(|P|)e
dlog32(|P|)e

Figure 2.5: Plot of h(P) for different M.

Another consideration when thinking about performance is the overhead and over-
head ratio. It is obvious that a smaller overhead, and consequently a smaller overhead
ratio, is preferable. It is also somewhat intuitive that a higher branching factor leads
to less overhead: In the extreme case, a persistent vector would degenerate down
to an immutable array, which has minimal overhead. However, the exact ratio and
how much there is to gain by more branching is not evident. Therefore, we will now
explore the memory overhead of a persistent vector and find its overhead ratio.

Definition 2.6. The overhead of a vector or trie T is the memory used on the whole
trie T that is not used to store an element:

memoh(T) = memtot(T) − |T|× |τ|

Definition 2.7. The overhead ratio for a persistent vector P is

memoh(P)
memtot(P)

Theorem 2.6. In a fully dense trie T, the total amount of internal nodes is

Mh(T) − 1
M − 1

Proof. In a fully dense trie, there are Mh(T)+1 elements which are stored within Mh(T)

leaf nodes. All the leaf nodes are stored within Mh(T)−1 nodes at the second level,

2.9 Performance 24

which are stored within Mh(T)−2 nodes at the third level and so on. As the trie has a
total of h(T) levels if we exclude the lowest level, we get

h(T)∑
i=1

Mh(T)−i =

h(T)−1∑
i=0

Mi

This is the well known finite geometric series, which expands to

Mh(T) − 1
M − 1

Theorem 2.7. The overhead of a fully dense trie T is

memoh(T) =
p(|T|− M) + o(|T|− 1)

M − 1

Proof. We assume the constant overhead per node, denoted o, is equivalent for both
internal and leaf nodes.

The size of a fully dense trie T is |T|. All of these values will be inside leaf nodes,
which all contain M elements. A single leaf node has o overhead.

There are (Mh(T) − 1)/(M − 1) internal nodes. All of the internal nodes contain M
pointers of size p, and an additional overhead of o. We can therefore derive the
formula above:

memoh(T) =
o× |T|

M
+

Mh(T) − 1
M − 1

× (Mp+ o)

=
o× |T|

M
+

Mh(T)+1 − M
M(M − 1)

× (Mp+ o)

=
o× |T|

M
+

|T|− M
M(M − 1)

× (Mp+ o) by Corollary 2.1

=
o× |T| (M − 1)

M(M − 1)
+

|T|− M
M(M − 1)

× (Mp+ o)

=
o× |T| (M − 1) + (|T|− M)(Mp+ o)

M(M − 1)

=
o |T|M − o |T|+ |T|Mp+ o |T|− M2p− oM

M(M − 1)

=
o |T|+ |T|p− Mp− o

M − 1

=
p(|T|− M) + o(|T|− 1)

M − 1

Theorem 2.8. The overhead of a leftwise dense trie T is

memoh(T) = o+ (p+ o)

h(T)∑
i=1

⌈
|T|
Mi

⌉

2.9 Performance 25

Proof. In a lefwise dense persistent trie, all of the nodes will, with the exception of
the topmost node, have a pointer towards it. Consequently, every node minus one
contributes to o+ p overhead, and a single node contributes to o overhead.

A trie will contain d|T| /Mi+1e nodes at level i, where i = 0 is the lowest level. As the
height of a trie is h(T), we have that

memoh(T) = (p+ o)

h(T)+1∑
i=1

⌈
|T|
Mi

⌉− p

= (p+ o)

⌈ |T|
Mh(T)+1

⌉
+

h(T)∑
i=1

⌈
|T|
Mi

⌉− p

= (p+ o)

⌈ |T|
MdlogM(|T|)e

⌉
+

h(T)∑
i=1

⌈
|T|
Mi

⌉− p by Theorem 2.2

= (p+ o)

1 +

h(T)∑
i=1

⌈
|T|
Mi

⌉− p Assuming |T| > 0

= o+ (p+ o)

h(T)∑
i=1

⌈
|T|
Mi

⌉
For |T| = 0, we have exactly one empty leaf node, so memoh(T) = o if |T| = 0. The
equation derived above therefore also holds for |T| = 0.

Theorem 2.9. For sufficiently large tries, the overhead for a leftwise dense trie T is
approximated by the overhead for a fully dense trie:

o+ (p+ o)

dlogM(|T|)e−1∑
i=1

⌈
|T|
Mi

⌉
≈ p(

|T|− M) + o(|T|− 1)
M − 1

Proof. Let

a = o+ (p+ o)

dlogM(|T|)e−1∑
i=1

⌈
|T|
Mi

⌉
ã =

p(|T|− M) + o(|T|− 1)
M − 1

We then have that the absolute error is

ε = ã− a

2.9 Performance 26

and

a = o+ (p+ o)

dlogM(|T|)e−1∑
i=1

⌈
|T|
Mi

⌉

6 o+ (p+ o)

dlogM(|T|)e−1∑
i=1

⌊
|T|
Mi

⌋
+ 1

= o+ (p+ o)

(
dlogM(|T|)e− 1 +

∞∑
i=1

⌊
|T|
Mi

⌋)

< o+ (p+ o)

(
dlogM(|T|)e− 1 +

∞∑
i=1

|T|
Mi

)

= o+ (p+ o)

(
dlogM(|T|)e− 1 +

|T|
M − 1

)
= (p+ o)dlogM(|T|)e+

|T| (p+ o)
M − 1

− p

consequently

ã− a <
p(|T|− M) + o(|T|− 1)

M − 1
−

(
(p+ o)dlogM(|T|)e+

|T| (p+ o)
M − 1

− p

)
=
p(|T|− M) + o(|T|− 1) − |T| (p+ o)

M − 1
− (p+ o)dlogM(|T|)e+ p

=
−pM − o

M − 1
− (p+ o)dlogM(|T|)e+ p

=
−o− p

M − 1
− (p+ o)dlogM(|T|)e

As |ε| with respect to |T| grows much slower than both a and ã, a ≈ ã for sufficiently
large vectors.

Corollary 2.7. The overhead ratio for a leftwise dense trie T with branching factor M
is approximately

p(M − |T|) − o(|T|− 1)
M(p− |τ|× |T|) − o(|T|− 1) + |T| (|τ|− p)

Proof. The overhead can be approximated by Theorem 2.9. Therefore,

memoh(T)
memoh(T) + |T|× |τ|

≈
(p(|T|− M) + o(|T|− 1))/(M − 1)

(p(|T|− M) + o(|T|− 1))/(M − 1) + |T|× |τ|

The corollary can be derived from this expression through algebraic manipulation.

Corollary 2.8. The overhead ratio for any sufficiently large persistent vector P with
branching factor M is approximately

o+ p

o+ p+ (M − 1) |τ|

2.9 Performance 27

Proof. The overhead ratio of a persistent vector is approximately equal to the overhead
ratio of its trie T.

lim
|P|→∞

memoh(P)
memtot(P)

= lim
|P|→∞

p(M − |P|) − o(|P|− 1)
M(p− |τ|× |P|) − o(|P|− 1) + |P| (|τ|− p)

= lim
|P|→∞

f(|P|)
g(|P|)

where

f(|P|) = p(M − |P|) − o(|P|− 1) = pM + o− |P| (o+ p)

g(|P|) = M(p− |τ|× |P|) − o(|P|− 1) + |P| (|τ|− p)

= |P| (|τ|− p− M |τ|− o) + Mp+ o

= − |P| (o+ p+ (M − 1) |τ|) + Mp+ o

The derivatives of f and g with respect to |P| are

f′(|P|) =
d(pM + o− |P| (o+ p))

d |P|
= −(o+ p)

and

g′(|P|) =
d(− |P| (o+ p+ (M − 1) |τ|) + Mp+ o)

d |P|
= −(o+ p+ (M − 1) |τ|)

Assuming o+ p < 0 and o+ p+ (M − 1) |τ| < 0, then

lim
|P|→∞ f(|P|) = lim

|P|→∞g(|P|) = −∞
and g′(|P|) 6= 0 for all |P|. We can therefore use L’Hôpital’s rule, and get that

lim
|P|→∞

f(|P|)
g(|P|)

H
= lim

|P|→∞
f′(|P|)
g′(|P|)

=
−(o+ p)

−(o+ p+ (M − 1) |τ|)

=
o+ p

o+ p+ (M − 1) |τ|

None of these calculations includes the size of unused additional pointers in the
rightmost trie nodes, but that is okay. The highest possible amount of unused pointers
will be M − 1 for a single node (except the root node), which there can at most be

2.9 Performance 28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 10 102 103 104

O
ve

rh
ea

d
R

at
io

Vector Size

M = 2
M = 4
M = 8

M = 16
M = 32

Figure 2.6: Overhead ratio for different M.

h(P)+1 of. As such, the additional overhead may at worst be< p×(h(P)+1)(M−1).
This term grows logarithmically, which is much slower than the total overhead and
therefore negligible.

Figure 2.6 presents the actual overhead ratio of a persistent vector with varying
branching factors, where o = 16 and p = |τ| = 8. From Corollary 2.8, we expect the
overhead ratio to stabilise around 0.75 for M = 2, and around 0.088 for M = 32,
which it does.

While overhead calculations are important for memory, it is also important for time:
Less overhead means that the cache can contain more of the vector simultaneously,
and is less likely to swap it out with other data, regardless of whether the data is
contiguous or not.

If the data is not contiguous, having trie nodes smaller than the size of a memory
cache line would further reduce the possibility to have the entire vector in the cache,
and increase the probability of cache misses. However, how big this problem is in
reality is hard to estimate: It depends on the garbage collector used, and when the
data is allocated on the heap [16].

All in all, using a higher branching factor gives multiple benefits for performance re-
lated both to space and time. [3] briefly mentioned the time performance for different
M on a persistent vector, which is independently explored here. The results presented
in Figure 2.7 is the running time for a single indexing and updating operation on a
persistent vector containing exactly 500 000 elements. The implementation of the
naïve persistent vector is implemented in C, used the setup as presented in Section

2.9 Performance 29

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 8 16 32 64

ns
ec

M

Index vs. Update

Index
Update

2 4 8 16 32 64
INDEX 633 116 71 47 35 29

UPDATE 1380 472 399 484 505 730

Figure 2.7: Persistent vector indexing and update times.

9.1. The operations were done 10 000 000 times in a single run, and the average
value of the interquartile range of 100 runs is the value presented.

Assuming updates happen considerably less frequently than indexing, M = 32 strikes
as a good fit. For this reason, we can consider many of the persistent vector operations
to run in effectively constant time:

Definition 2.8. An algorithm A whose runtime depends on n is running in effectively
constant time, O (∼1), if the effective running time on modern computers does not change
significantly when n changes significantly.

The definition of effectively constant time is intentionally vague: It should only be
considered as a way of conveying that an algorithm is fast and that its runtime can
be considered constant with current modern computer architectures. Of course, at
some point, the theoretical factors turn noticable. However, for users without very
heavy performance requirements, the actual runtime will be indistinguishable from
constant time.

Table 2.1 presents all the operations on a persistent vector with a tail, with its
theoretical and effective runtimes. As seen, there are very few actual constant time
operations, although there are considerably many which runs in effectively constant
time. Many of these are commonly done on arrays, the persistent vector is thus an
ideal candidate as a functional equivalent to a dynamically growing array.

2.9 Performance 30

NAME OPERATION ACTUAL RUNTIME EFF. RUNTIME

Lookup Ai O (logM n) O (∼1)
Last last(A) Θ(1) Θ(1)

Count |A| Θ(1) Θ(1)
Update Ai ← x O (M logM n) O (∼1)
Append conj(A, x) O (M logM n) O (∼1)

Pop pop(A, x) O (M logM n) O (∼1)
Iteration for x in A: Θ(n) Θ(n)

Concat A ++ B O (M logM(n) |B|) O (∼ |B|)
Right slice A(0,i) O (M logM n) O (∼1)
Left slice A(i,|A|) O (M logM(n)× n) O (∼n)

Slice A(i,j) O (M logM(n)× n) O (∼n)

Table 2.1: Time complexity of persistent vector operations, where n = |A|.

CHAPTER 3

RRB-Trees

The persistent vector excels at many operations, but is not good at general-purpose
slicing and concatenation, which is sometimes essential for parallel processing. The
data structures ropes and finger trees do enable fast concatenation and slicing [17,
18]. However, the index time of a rope is O (log(s + c)), in which s is the number
of splits, and c is the number of concatenations. In addition, splits hold onto the
original nodes, creating potential semantic garbage. The finger tree avoids these
issues, however its index times can not be considered effectively constant. The RRB-
tree attempts to enable efficient concatenation while retaining efficient indexing, by
extending the persistent vector [3].

Much of the work in this chapter is similar to that of Bagwell and Rompf, but ap-
proached from a different view: We define the RRB-tree differently but semantically
equivalent, in what we believe is an easier to comprehend definition. Additionally,
we provide formal proofs, and algorithms which should ease the implementation for
practitioners.

3.1 Introduction

Recall that a persistent vector is leftways dense: All its internal nodes will contain
M slot entries, with the possible exception of the rightmost nodes. The initial idea
behind RRB-trees is to relax its requirement of being dense, such that the branching
factor for any node can be Ml 6 ‖T‖ 6 Mm without breaking the density property:

Definition 3.1. Let dR
full(T) denote that the trie T is fully relaxed dense. An Mm-way

branching trie T containing type τ is fully relaxed dense if and only if 0 < Ml 6 ‖T‖ 6
Mm and

‖T‖−1∧
i=0

Ti : τ if h(T) = 0

‖T‖−1∧
i=0

dR
full(Ti) if h(T) 6= 0

31

3.1 Introduction 32

Definition 3.2. Let dR
left(T) denote that the trie T is leftwise relaxed dense. An Mm-

way branching trie T containing type τ is leftwise relaxed dense if and only if 0 <
‖T‖ 6 Mm and

‖T‖∧
i=0

Ti : τ if h(T) = 0(‖T‖−1∧
i=0

dR
full(Ti)

)
∧ dR

left(T‖T‖−1) if h(T) 6= 0

If an RRB-tree R is leftwise relaxed dense, its root trie Rroot must be leftwise dense, and
either h(R) = 0 or 1 < ‖Rroot‖ must be satisfied.

From the theorems related to the persistent vector, we can quickly create a good
portion of corollaries:

Corollary 3.1. If dR
full(T), then Mh(T)+1

l 6 |T| 6 Mh(T)+1
m .

Proof. In the most dense case, all nodes contain Mm elements. If so, dfull(T) will be
satisfied, assuming M = Mm. This implies |T| = Mh(T)+1

m by Theorem 2.1.

In the least dense case, all nodes contain Ml elements. If so, dfull(T) will be satisfied,
assuming M = Ml. This implies |T| = Mh(T)+1

l by Theorem 2.1.

It then follows that Mh(T)+1
l 6 |T| 6 Mh(T)+1

m .

Corollary 3.2. If dR
full(T), then

logMm(|T|) − 1 6 h(T) 6 logMl(|T|) − 1

Proof. This follows from the same logarithmic definition used in Corollary 2.1.

Corollary 3.3. Given a leftwise relaxed dense RRB-tree R,

hm(R) = dlogMm(|R|)e− 1

hl(R) = dlogMl(|R|)e− 1

and

h(R) = 0 if |R| 6 Ml

hm(R) 6 h(R) 6 hl(R) if Ml < |R|

Corollary 3.4. hl(R) = dlogMl(|P|)e− 1 ∈ Θ(logMl(|R|))

3.1 Introduction 33

Assuming we can use the algorithms described in Chapter 2, an RRB-tree with minimal
branching factor Ml and maximal branching factor Mm will, in the worst case, have
the same asymptotic runtimes as an Ml-way branching persistent vector.

However, the RRB-tree is relaxed even further: The search step relaxed RRB-tree
allows concatenations to be even more efficient by allowing some, but not all nodes
to be even smaller. It does so by considering the total amount of children contained
over a set of children: If a node has many siblings which are filled, then this node
may have very few children, provided the average number of children is above some
threshold.

In order to comprehend the definition of the search step relaxation, we define Topt
through the definition of redistribution:

Definition 3.3. An expansion of a trie T is the ordered list of its children:

〈c0, c1, . . . , c‖T‖−1〉

An expansion of an ordered list of tries of same height 〈T0, T1, . . . Tn〉 is the concatenated,
ordered list of their expansions

〈T0[0], T0[1], . . . T0[‖T0‖− 1], T1[0], . . . Tn[‖Tn‖− 1]〉

Definition 3.4. A redistribution of an ordered list of tries of same height

L = 〈L0, L1, . . . L‖L‖−1〉

is the ordered list
L′ = 〈L′0, L′1, . . . L′‖L′‖−1〉

where the expansions of L and L′ are equal.

The redistribution of the trie T is T′, where L is the expansion of T, L′ is the expansion
of T′, and L′ is a redistribution of L.

A redistribution of a list of nodes can be seen as a way to contain the same children
in same order, but where some parents contain different children by having different
lengths. Note that a redistribution of a list of tries does not always need to be the
same length as the original: It is sometimes possible to distribute the children over
fewer or more parent nodes, while stil satisfying the density constraints.

Figure 3.1 contains an example of such a redistribution: Both Figure 3.1a and 3.1b
are redistributions of each other. The children could be both leaf nodes and internal
nodes, the only reason for the labels is to show that they are in the same order.

Now we can finally define Topt:

3.1 Introduction 34

1 2 3 4 5 6 7 8 9 A B

(a) Distribution over 3 parents

1 2 3 4 5 6 7 8 9 A B

(b) Distribution over 4 parents

Figure 3.1: Redistribution of nodes.

Definition 3.5. Topt is some redistribution of T, h(T) > 0, such that for all redistribu-
tions T′ of T, ‖Topt‖ 6 ‖T′‖.

In other words, Topt is some redistribution of T that gives the smallest length of Topt.
Note that there may be multiple Topt, in which case we pick any one of them.

If we go back to Figure 3.1, we see that Figure 3.1a is a Topt assuming M = 4: We are
unable to store 11 children with less than 3 parents. We easily see that Figure 3.1b is
not a Topt, because it stores all the children in 4 parents, instead of the optimal 3.

Theorem 3.1. For all Topt

‖Topt‖ =

⌈∑‖T‖−1
i=0 ‖Ti‖

M

⌉

Proof. Let S be the sum of all the children of every Ti:

S =

‖T‖−1∑
i=0

‖Ti‖

One way to store all S children in the minimum amount of parent nodes is by filling
up the first one with M of the remaining children, then repeat for all the following
nodes until we have no children left. Using this technique, we will have⌊

S
M

⌋
nodes with exactly M children, and a potential last node with < M children. If we
need the last node, then S/M has a nonzero remainder, and⌈

S
M

⌉
therefore returns the minimal amount of nodes required.

3.1 Introduction 35

Using Theorem 3.1 we can now measure the density of a set of nodes, instead of
measuring the density of a single node:

Definition 3.6. Let dR(T) denote that the trie T is search step relaxed. An M-way
branching trie T containing type τ is search step relaxed if and only if either

1. h(T) = 0, ‖T‖ > 0, and all its table entries are of type τ, or

2. h(T) > 0,
‖T‖ 6 ‖Topt‖+ emax

and
‖T‖−1∧
i=0

dR(Ti)

for some predefined emax

If an RRB-tree R is search step relaxed, its root trie Rroot must be search step relaxed,
and either h(P) = 0 or 1 < ‖Proot‖ must be satisfied.

Curiously, a search step relaxed tree does not require a definition of fully dense or
leftwise dense. As such, the height relation is harder to convey, and the results might
initially be somewhat surprising.

Theorem 3.2. The height h(R) of an M-way branching search step relaxed RRB-tree
R is

hm(R) 6 h(R) 6 ∞
where

hm(R) = dlogM(|P|)e− 1

Proof. The minimal height of an RRB-tree is when the RRB-tree is leftwise dense. In
that case, it has the height of a leftwise dense persistent vector, hm(R).

Assume emax > 0. In the worst case, the top trie T has 0 nodes that are fully dense,
and 2 nodes that contain a single subtrie. The 2 nodes can contain a single child
without breaking the invariant. These 2 nodes can again contain a single child, and so
forth. This implies that the upper height is unbound if we only use this invariant.

As shown in the proof for Theorem 3.2, from a theoretical standpoint, the height
of an RRB-tree can be infinitely high. Clearly, the actual height of an RRB-tree is
considerably lower than infinity: In fact, assuming we never break the invariant and
use “sensible” operations on the RRB-tree, the tree can be considered to have the
height of a leftwise relaxed dense RRB-tree for some Ml. Theorem 3.4 proves this
formally after the concatenation algorithm is properly explained.

The RRB-tree uses the same ideas as the persistent vector uses for branching. Conse-
quently all the same bitwise optimisations presented in Section 2.3 can be done for
all algorithms presented in this chapter, where values of M are equal to some power
of two higher than one.

3.2 Relaxed Radix Access 36

7 4 0 8 3 6 8 5 8 3 1 4 1 76 1

3 5 8 11 2 5

11 16

Figure 3.2: Trie containing size tables.

3.2 Relaxed Radix Access

As shown in previous section, a relaxed radix balanced tree does not necessarily have
to be fully dense. A result of that is that it is not possible to use radix search in general
to find the element at a given index.

In order to implement some sort of index access algorithm, we have to extend tries
with a size table. The size table of a trie T contains ‖T‖ integers, where the ith entry
is the cumulative sum of the sizes of all children in T up to and including the ith
table entry. The size table is denoted σ(T), and the ith size table entry is denoted
σi(T). If σ(T) = NIL, then dleft(T) and the index can be computed through the radix
access algorithm presented in Section 2.3. As leaf nodes are by definition leftwise
dense, they will never have a size table.

Implementation wise, a size table is not usually stored within the trie node. It is
instead a pointer to a fixed array of integers for two reasons: First, if σ(T) = NIL, then
storing the values in the node itself will waste space. Second, when performing an
UPDATE operation, no size table has to be modified. Copying the sizes require more
time and space, which is wasteful.

Figure 3.2 shows a subtrie where all nodes, with the exception of the leaf nodes,
have size tables. The size table of an internal node is the node immediately left of it.
An internal node without a size table will be represented as a node where the arrow
extending directly left points to nothing.

We can find the correct table entry to walk by performing a search over the size table:
As the size table contains the cumulative sizes of their children, the correct one to
walk is the first entry with a cumulative sum strictly higher than the index of the
element we want to lookup.

3.2 Relaxed Radix Access 37

An initial attempt may use binary search to find the correct node to traverse. However,
measurements shows that a binary search is is slower than an improved version of a
linear search, the relaxed radix search [3]:

Assuming we use a normal linear search, we can improve it as we know that we can
skip a certain number of slots. Recall that Section 2.3 states that the index to walk
in a leftways dense trie T is i′ =

⌊
i

Mh(T)

⌋
mod M. Can the index to walk in a relaxed

dense trie T be less than i′? Clearly not: The most dense trie T will be fully dense, in
which case i′ will be the correct index to walk. For less dense tries, the index may be
higher, but never lower. As such, we can start the linear search by inspecting σi′(T),
then continue onwards.

1 function RRB-LOOKUP(R, i)
2 T ← Rroot
3 d← Mh(T)

4 for h← h(T) downto 0 do
5 i′ ←

⌊
i
d

⌋
mod M

6 if σ(T) 6= NIL then
7 while σi′(T) 6 i do
8 i′ ← i′ + 1
9 end while
10 if i′ 6= 0 then
11 i← i− σi′−1(T)
12 end if
13 end if
14 T ← Ti′
15 d← d

M
16 end for
17 return T . T is element here
18 end function

Listing 3.1: Relaxed radix search.

Listing 3.1 presents the relaxed radix search algorithm. Notice that we must subtract
the additional cumulative size from the subtries in front of us to get the index at next
level. Otherwise, the size tables would have to be aware of the sizes of tries at their
left side, which would cause concatenation and slices to be linear of the size of the
RRB-tree.

With this improved linear search, what is the maximal amount of steps in the linear
search per node? Assume the current node T is fully relaxed dense, and we want to
look up the element at index Mh(T)+1

l − 1, possibly the last element. We expect to
walk index

i′ =

⌊
Mh(T)+1
l − 1

Mh(T)
m

⌋
=

⌈
Mh(T)+1
l

Mh(T)
m

⌉
− 1

3.3 Update 38

We know that in the worst case, we will walk index Mm−1, consequently the maximal
extra search steps will at most be

iδ = Mm − 1 −

⌊
Mh(T)+1
l − 1

Mh(T)
m

⌋
= Mm −

⌈
Mh(T)+1
l

Mh(T)
m

⌉
=

⌈
Mh(T)+1
m − Mh(T)+1

l

Mh(T)
m

⌉

For Mm = 32 and Ml = 31, the worst case will requires 5 extra steps at the highest
level. For a complete walk of a trie, the worst case amount of extra steps in total will
be 15. While this value will remain relatively low for tries where Mm and Ml do not
differ by too much, it could theoretically be Mm at each step.

This algorithm will not impact the height in any way, as it does not modify the trie.
The worst runtime is O (M × h(R)): In the worst case, all nodes we traverse have a
size table, and we have to check all M entries in it to find the right path. The best
access time is Ω(h(R)), in which we either pick the correct path all the time.

3.3 Update

Updating a value in an RRB-tree is in and by itself the same implementation described
in Section 2.4: A shallow copy of the RRB-tree and the nodes down the path taken is
done. Listing 3.2 shows the algorithm, using the relaxed radix search to find the path
down to the leaf node.

1 function RRB-UPDATE(R, i, val)
2 R′ ← CLONE(R)
3 T ← CLONE(Rroot)
4 R′root ← T
5 for h← h(R′) downto 1 do
6 i′ ← CALCULATE-CHILD-INDEX(T, i,h)
7 i← UPDATE-INDEX(T, i,h)
8 Ti′ ← CLONE(Ti′)
9 T ← Ti′
10 end for
11 i′ ← i mod M
12 Ti′ ← val
13 return P′

14 end function

Listing 3.2: RRB-tree update.

To ease readability, the relaxed radix search is abstracted behind the functions
CALCULATE-CHILD-INDEX and UPDATE-INDEX. They can be considered functions rep-
resenting the lines 5-13 in Listing 3.1, but which implicitly calculates d. An actual
implementation would include optimisations explained earlier to increase perfor-
mance.

3.4 Concatenation 39

As easily seen, the algorithm does not update the size tables, nor copy them. As the
size of all tries will still be the same, there is simply no need to do so. It also means
that the update function will not affect the height of an RRB-tree.

RRB-UPDATE has worst case runtime O (2M× h(R)), and best case Ω(M× h(R)). The
runtime is equal to the relaxed radix access, with an additional M for the required
copy at each level in the trie.

3.4 Concatenation

The concatenation algorithm differs based upon which relaxation method we choose.
We will start with the leftwise relaxed dense RRB-tree. From there on, we extend
the concatenation algorithm to satisfy the search step relaxation constraints, which
increases performance.

3.4.1 Ml − MM Concatenation

The Ml − Mm Concatenation algorithm works as follows: Assume we concatenate
two trees, Tl and Tr:

Tl ++ Tr = TT

The algorithm starts by walking down to the rightmost node at level 1 in Tl, denoted
Q1
l , and the leftmost node at level 1 in Tr, denoted Q1

r. To be able to concatenate Q1
l

and Q1
r, all of their children (leaf nodes) must conform to the leftwise relaxed dense

invariant. As such, if the leftmost leaf node in Q1
l contains less than Ml elements in

it, it either has to redistribute the leaf node over the other leaf nodes, or redistribute
slots from the other leaf nodes such that all nodes has at least Ml elements.

It then takes the leaf nodes and insert at most Mm leaf nodes into the replacement
node U1

l , and the remaining nodes (if any) in the replacement node U1
r. After that,

replace the rightmost node at level 1 in Tl with U1
l and the rightmost node at level 1

in Tr with U1
r. The algorithm continues by repeating the process at level 2, until the

whole tree has been concatenated.

However, is it always possible to redistribute the leaf nodes such that they satisfy the
leftwise dense invariant? There are two cases to consider:

1. Both Q1
l and Q1

r are leftwise relaxed dense.

2. Q1
l is leftwise relaxed dense, and Q1

r is fully relaxed dense.

3.4 Concatenation 40

The first case is easy to resolve: If Q1
r is leftwise relaxed dense, then the rightmost

leaf node can be leftwise relaxed dense. Why? Because Q1
r must be, by definition, the

rightmost node at level 1 in Tr. If the rightmost leaf node can be leftwise relaxed
dense, we can always distribute the slots over some amount of leaf nodes whose size
is Ml 6 ‖Tleaf‖ 6 Mm, and put the “leftovers” in the last slot.

In the second case, all leaf nodes must be rebalanced to contain between Ml and
Mm node. If the last leaf node in Q1

l is less than Ml long, the leaf nodes must be
rebalanced. We ignore all the other leaf nodes in Q1

l , as they satisfy the invariant by
definition.

We know that Ml 6 ‖Q1
r‖ 6 Mm, and that all the leaf nodes are of length Ml or

better. As a consequence, the minimum number of slots the children of Q1
r contain is

M2
l , and the most is M2

m. If we include the rightmost slot in Q1
l , the total amount of

slots S is
M2
l + 1 6 S 6 M2

m + (Ml − 1)

because the rightmost child in Q1
l contains at least 1 and at most Ml − 1 slots.

These S slots then has to be redistributed over Ml 6 n 6 Mm + 1 nodes such that
all n nodes contain between Ml and Mm slots. If M2

l 6 S 6 MmMl, then we can
distribute the slots such that we have Ml nodes which all contain between Ml and
Mm slots. If MmMl < S 6 M2

m, then we can always have Mm nodes which all contain
between Ml and Mm nodes.

If S > M2
m, then there is not enough space in Mm nodes, and we have to redistribute

slots into the short node from the full ones. In the worst case, the node contains a
single element, and we have to move Ml − 1 elements from the other nodes into it.
This would require copying up to M2

m nodes, and always gives us Mm + 1 nodes.

The same logic applies at the next level. The only consideration to take into account
is the case where U1

r = NIL, in which U1
r is discarded.

As the worst case concatenation cost is M2
m at a single level, and the height of an

RRB-tree is h(R) 6 dlogMl(|R|)e− 1, the worst case runtime is O (M2
m logMl(|R|).

3.4.2 Search Step Concatenation

The search step concatenation algorithm works in the same fashion, but uses the
search step invariant instead: All the S slots must be contained in at most⌈

S
M

⌉
+ emax

nodes. It is easy to see that it is always possible to redistribute the slots over a set of
nodes: We can always fill up all the bS/Mc first nodes, and then insert the “leftover”
slots in the last node. Theorem 3.3 also proves that it is safe split the redistribution
into two trie nodes, as both trie nodes will satisfy the invariant.

3.4 Concatenation 41

Theorem 3.3. Let T be the trie representing the expansion of the ordered list 〈A, B〉,
where A, B are tries. ‖T‖ is allowed to be higher than M.

If ‖T‖ 6 ‖Topt‖+ k for some nonnegative integer k, then

‖A‖ 6 ‖Aopt‖+ k
‖B‖ 6 ‖Bopt‖+ k

Proof. Assume ‖T‖ = ‖Topt‖+k, and let A be the result of picking n random children
from T. B is the remaining children in T which are not in A.

A can not be of a length higher than ‖Aopt‖+k. As A only contains children from T, if
‖Aopt‖+ k < ‖A‖, then ‖Topt‖+ k < ‖T‖, which contradicts our initial assumption.
The same logic applies to B.

This concatenation algorithm can in fact do even better, as it can safely skip nodes
with M− emax

2 slots or more, and redistribute nodes with a lower size over the siblings
right of them.

To see why, first assume that the concatenation step only contains nodes which have
M− emax

2 or more slots. In the worst case scenario, we concatenate two fully populated
nodes, so we have 2M nodes. In the least dense case, all of these will contain exactly
M − emax

2 slots. By Theorem 3.1, the optimal slot usage is⌈
(M − emax

2)× 2M
M

⌉
= 2M − emax

and, as such, satisfies Definition 3.6 and require no rebalancing.

Next, consider the case where we have n nodes. The firstm−n > 0 nodes all contain
at least M − emax

2 slots, and the lastm > 0 nodes contain in total (m− 1)M + 1 slots.
All the last m nodes have less than M − emax

2 slots in them. This means that, if we
break the invariant, we are unable to rebalance and retain the invariant if we do not
redistribute some slots over the first n−m nodes.

The least amount of total slots which we may have to rebalance, is therefore m− n
nodes which contain M − emax

2 slots. The remaining m nodes contain in total (m−
1)M + 1 slots. Thus, the optimal use of slots is, by Theorem 3.1,⌈

(n−m)× (M − emax
2) + (m− 1)M + 1
M

⌉
=

⌈
1 + emax

2 (m− n)

M

⌉
+ n− 1

If we distribute all the (m− 1)M + 1 slots over the last m nodes evenly, we get the

3.4 Concatenation 42

following inequality:

(m− 1)M + 1
m

< M −
emax

2

(m− 1)M + 1 < mM −m
emax

2

mM − M + 1 < mM −m
emax

2

mM < M − 1 +mM −m
emax

2

m
emax

2
< M − 1

m <
2(M − 1)
emax

It follows that we can not have any m higher or equal to 2(M − 1)/emax as, by the
pigeonhole principle, at least one node must have M − emax

2 or more slots in it.

Now, let us attempt to minimise the value of the ceiling in the optimal slot usage
expression. In order to do so, we minimise m and maximise n:

m = 1

n = 2M

By substituting these values in the ceiling expression, we get⌈
1 + emax

2 (m− n)

M

⌉
=

⌈
1 + emax

2 (1 − 2M)

M

⌉
=

⌈
1 + emax

2 − Memax
M

⌉
=

⌈
1 + emax

2

M

⌉
− emax

= 1 − emax

and as a result, the lowest possible optimal slot size in these scenarios are

(1 − emax) + n− 1 = n− emax

This shows that there is no need to rebalance nodes of size M − emax
2 , which proves

that this optimisation is sound.

The CREATE-CONCAT-PLAN presented in Listing 3.3, contains the essence of this algo-
rithm. The function takes a trie node T, which may be wider than M elements, and
returns an array c of the rebalanced node sizes, along with the new total length n.

As ‖Topt‖ is required to know when to stop rebalancing, it is calculated in the lines
3-8: The algorithm itself starts at line 11: Lines 12-14 skips over nodes which we can

3.4 Concatenation 43

1 function CREATE-CONCAT-PLAN(T)
2 c←CREATE-INT-ARRAY(‖T‖)
3 S← 0
4 for i← 0 to ‖T‖− 1 do
5 ci ← ‖Ti‖
6 S← S + ‖Ti‖
7 end for
8 ‖Topt‖ ←

⌈
S
M

⌉
9 n← ‖T‖ . Length of rebalanced node
10 i← 0
11 while ‖Topt‖+ emax < n do
12 while ci 6 M − emax

2 do
13 i← i+ 1
14 end while
15 r← ci . Distribute i over remaining nodes
16 while r > 0 do
17 MIN-SIZE ←MIN(r+ ci+1, M)
18 ci ← MIN-SIZE

19 r← r+ ci+1 − ci
20 i← i+ 1
21 end while
22 for j← i to n− 1 do
23 ci ← ci+1

24 j← j+ 1
25 end for
26 i← i− 1
27 n← n− 1
28 end while
29 return c,n
30 end function

Listing 3.3: Algorithm to create a concatenation plan.

safely skip. Actual redistribution is done at lines 15-21, where the remaining slots to
distribute is r, initially all the slots. Then the current slot, initially the old node, is
replaced with its right sibling plus some of the slots to distribute. The new node slot
count cannot be more than M, and if there are remaining slots to redistribute, we
continue the slot distribution.

Since the plan has removed a node from T, all nodes right to it must be shifted one
step to the left. The ones that received additional nodes have already been moved,
and the remaining ones are moved in the lines 22-25. Finally, realise that the last
node we distributed slots over can still contain less than M − emax

2 slots. Since we
have checked all nodes before this one, we must start next step by checking it again,
hence the decrementing at line 26.

3.4 Concatenation 44

The additional functions needed to rebalance an RRB-tree is further explained in
Appendix A: The only important thing to know within this section is that the original
nodes Qkl and Qkr are temporarily merged into a single node, which is why CREATE-
CONCAT-PLAN must allow trie nodes to be greater than M slots large.

In the worst case, this algorithm receives two fully populated trie nodes and concate-
nates them together, having 2M nodes. The first node has a single slot, then follows
2M − 2 − emax fully dense nodes. Finally, the last 1 + emax nodes contains a single
slot. In this case, the algorithm will redistribute the first node. Since only the last
nodes can contain more slots, the redistribution will happen over all the fully dense
nodes, which requires the algorithm to copy (2M − 2 − emax)M < 4M2 slots. As a
result, this algorithm also has a worst case runtime of O (M2

mh(|R|)). However, the
worst case scenario happens very infrequently, and on average this algorithm is faster
than the Mm − Ml concat algorithm by a factor of 3 [3].

It is not impossible to improve the worst case runtime: For instance, one can attempt
to find the cheapest small node to redistribute first. However, this may affect average
runtime, and alternative algorithms should be studied with that in mind. As the goal
of this thesis is to improve append performance, such research is left as future work.

3.4.3 Height

As earlier mentioned, the size of an RRB-tree is theoretically unbounded if we only
use Definition 3.6. Therefore, its lower bound depends on how the operations on
it manipulate the tree. Assuming only the concatenation algorithm operates on the
RRB-tree, we can prove that it is strictly less than a logarithmic factor not too far off
from the leftwise relaxed dense trie:

Theorem 3.4. For a search step relaxed radix balanced tree R with branching factor M
and error threshold emax < M − 1,

hm(R) 6 h(R) < hl(R)

if only concatenations are done on the RRB-tree, where

Ml = M − emax − 1

hl(R) = logMl(|P|) − 1

hm(R) = dlogM(|P|)e− 1

assuming |R| > 0.

Proof. Assume that

M − 1 < |T| iff h(T) = 0

(M − emax − 1)h(T) ×M < |T| iff h(T) 6= 0
(MIN-H)

3.4 Concatenation 45

for a fully populated node T is true.

We know that a fully populated node T where h(T) = 0 is a leaf node with M
elements, which satisfies (MIN-H).

Next, consider the fully populated node T, h(T) = 1. In general, a fully populated
node T at height h(T) contains M children and satisfies the expression

‖Topt‖+ emax 6 ‖T‖

because
‖Uopt‖+ emax 6 ‖U‖

where U is the expansion of the ordered list 〈T, T′〉, and T′ is one of T’s immediate,
possibly previous, siblings. The expression ‖Uopt‖+ emax 6 ‖U‖ is checked by the
concatenation algorithm at some point, and from Theorem 3.3, we thus know T
satisfies this expression.

In a least dense, fully populated node T,

‖T‖ = M = ‖Topt‖+ emax

We know from Theorem 3.1 that some redistribution of T will, in the least dense case,
give ‖Topt‖−1 fully dense nodes, and 1 node with a single child. Some redistribution
of T therefore contains M − emax − 1 fully populated nodes of height h(T) − 1, and
1 + emax nodes which contain only a single child.

As such, some redistribution of a least dense, fully populated node T at height
h(T) = 1 contains M − emax − 1 fully dense leaf nodes. Its size is thus

(M − emax − 1)×M < |T|

as the remaining 1 + emax nodes contain at least 1 element. This satisfies (MIN-H).

Next, for heights 6 h(T), we must prove that the hypothesis holds for k = h(T) + 1.
Recall that some redistribution of a least dense, fully populated node T′ at height
h(T′) = h(T)+1 has M− emax−1 fully populated nodes at height h(T). As (MIN-H)
holds for nodes of height h(T), we know that for all T,

(M − emax − 1)h(T) ×M < |T|

The size of T′ must at least be the sum of the fully dense node’s sizes. Therefore,

(M − emax − 1)(M − emax − 1)h(T) ×M = (M − emax − 1)h(T′) ×M < |T′|

and (MIN-H) holds by induction.

Next, notice that concatenating a trie of height k with some other trie of height 6 k
will in the worst case increase the height of a trie by 1: If there is not enough space

3.4 Concatenation 46

in a single trie node of level k, a new node containing both nodes will be placed at
height k+ 1.

There is not enough space in a single trie node if there are at least M+ 1 slots at level
k which combined satisfies the invariant. In the least dense case, the total length of
all the slots S would be

‖S‖ = ‖Sopt‖+ emax = M + 1

‖Sopt‖ = M + 1 − emax

As a result, some redistribution of the M+1 nodes will give M−emax fully populated
nodes, and 1 + emax nodes with a single child. If we assume all M − emax are least
dense, we have by (MIN-H) that

(M − emax)(M − emax − 1)h(T)−1 ×M < |T|

As M − emax − 1 < M − emax < M, we have that

(M − emax − 1)h(T)+1 < |T|

and by the definition of the logarithm:

h(T) < logM−emax−1(|T|) − 1

Although Theorem 3.4 proves that the height of a search step relaxed RRB-tree is
as good as a relaxed RRB-tree where Mm = M and Ml = M − emax − 1, it is very
unlikely that this happens in practise.

Why is this so? Recall that any concatenation will “zip” the rightmost node T of the
left trie and leftmost nodes of the right trie U at all levels: The expansion S of those
nodes must, according to the concatenation algorithm, satisfy

‖S‖ 6 ‖Sopt‖+ emax

Assuming both U and T are least dense, through some redistribution, they will have
emax + 1 nodes with a single slot, and ‖Topt‖− 1 or ‖Uopt‖− 1 fully dense nodes.
Their expansion will thus contain 2emax + 2 children with a single child. As such,
they must be rebalanced so that U and T combined uses emax extra search steps.

It is tempting to draw the conclusion that any immediate siblings must combined have
at most emax excessive children, but this is not true. Assume L and C have combined
emax excessive children, and that all the excessive children lie in L: ‖C‖ is therefore
‖Copt‖. Next, assume that C is compared with R. R has emax excessive children, so
combined, they have emax excessive children. However, the concatenation algorithm
redistributes the nodes, such that C′, the replacement for C, now contains the small
nodes. Now, both L and C combined have more than emax excessive children.

Luckily, L and C will rarely have more than emax exessive children: Benchmarks by
Bagwell and Rompf indicates that the height of an RRB-tree will rarely, if at all, be
more than logM−emax(|R|) in height [3].

3.5 Slicing 47

3.5 Slicing

Although the concatenation algorithm is complex, the slicing algorithm is not: It only
cuts the left and right hand side. Cutting the right hand side is done by copying the
path down to the last element which resides in the slice, and removing table entries
in nodes right of the entry to walk. The size tables, if any, also has to be copied and
updated.

Cutting on the left hand side requires a bit more work, but uses the same idea: Remove
all table entries in nodes left of the entry to walk. In addition, since the leftmost leaf
in the new entry is very likely to not be leftwise dense, we add in size tables to all
trie nodes we create. If the size table does not already exist in the original node, we
calculate the size table entry by the height of the slot entry multiplied with the entries
to its left plus one:

σi(T) = (i+ 1)×Mh(Ti)+1

The only exception to this rule is the last element: If T is not fully dense, then the
rightmost child will contain fewer elements. The total size of T is either contained in
the difference between two size slots stored in its grandparent G, or, if this is the root
node, the total size of the vector.

Since we have a size table for the trie node or can calculate its values, we can create
a new size table based upon this. Assume there are j elements left of the slot we will
walk. If T′ is the new trie node, then

σi(T′) = σj+i(T) − left

where left is the index of the first element in the sliced RRB-tree, in the original
RRB-tree.

Finally, if the new root node contains just a single child, the root is replaced with its
child. This step is repeated until either the new root node contains more than one
child, or the node is a leaf node.

The problem with this implementation is that it is not rebalancing the sliced RRB-tree.
In the worst case, one can request a slice containing two nodes, which still has the
same height of the original tree. Additionally, the invariant may, in some occations,
be broken.

Is this a problem in practise? The possible lack of height reduction is certainly
problematic, but breaking the invariant will not cause the height of an RRB-tree to
increase notably. To see why, notice that the invariant can only be broken by the
rightmost and leftmost nodes at each level. As such, the invariant break is constrained
to at most 2h(R) + 1 nodes (the root is counted only once).

How big impact has this invariant break? Recall that Theorem 3.3 says we can split
any node into two parts without breaking the invariant. Thus, only the shrinking of

3.6 Performance 48

the length of a slot entry may cause the node to break the invariant. As a result, the
node may contain one slot more than what is allowed in the worst case scenario:

‖Topt‖ 6 ‖T‖ 6 ‖Topt‖+ emax + 1

Furthermore, since the invariant may be broken only at the leftmost and rightmost
nodes, concatenations we perform with this tree will fix some of the breaks: The
result of a concatenation will have the breaks fixed at either the left or right side
through rebalancing.

The RRB-tree may increase its height for slightly smaller tree sizes, but as the invariant
break happens infrequently and does not impact a large part of the tree, it can be
considered negigible.

The asymptotic runtime of an RRB-tree slice is proportional to the height of the
RRB-tree. For each step, we may in the worst case copy a node and a size table of
length M. As we perform the slice both to on the right and the left side, its worst case
runtime is O (4M × h(R)).

3.6 Performance

Assuming all other operations are based upon slicing and concatenation, the invariant
will be kept to the extent described in previous section. Appends can be implemented
by creating a new RRB-tree with a single element, and concatenate the new tree into
the original. Popping can be achieved by slicing off the last element: As this is only a
right slice, it takes worst case 2M time instead of the 4M required by a full slice.

Although many of the persistent vector operations can be considered effectively
constant time, does the same apply to the RRB-tree? Bagwell and Rompf measured
its performance on all of these operations, and found that, on average, index times
were twice as slow as in a regular vector, updates a little more than twice as slow.
Concatenations were 2 to 6 times as slow as an RRB-tree update on average, and in
the worst case 30 times as slow.

It is tempting, then, to consider appends and concatenations to be effectively constant
time. However, [19] shows that append times using the concatenation implementation
is clearly not constant time, and is in fact very costly. Other operations seem to run
in effectively constant time, although they were not as heavily measured.

Table 3.1 presents all the operations with their asymptotic and effective runtimes.
While the effective runtimes looks similar to the persistent vector, effectively constant
time operations are in the worst case a factor of two slower or more. However, when
no concatenation or left slicing is done, all operations on RRB-tree can reuse the
persistent vector operations, as the trie is guaranteed leftwise dense. In and by itself,
this looks promising, with the notable exception of the worst case append times.

3.6 Performance 49

NAME OPERATION ACTUAL RUNTIME EFF. RUNTIME

Lookup Ai O (logMl n) O (∼1)
Last last(A) O (logMl n) O (∼1)

Count |A| Θ(1) Θ(1)
Update Ai ← x O (2Mm logMl n) O (∼1)
Append conj(A, x) O (M2

m logMl n) O (logn)
Pop pop(A, x) O (2Mm logM n) O (∼1)

Iteration for x in A: Θ(n) Θ(n)

Concat A ++ B O (M2
m logMl(|A|+ |B|)) O (logn)

Right slice A(0,i) O (2Mm logM n) O (∼1)
Left slice A(i,|A|) O (2Mm logM(n)) O (∼1)

Slice A(i,j) O (4Mm logMl(n)) O (∼1)

Table 3.1: Time complexity of RRB-tree operations, where n = |A|.

CHAPTER 4

Transience

Immutable data structures are hard to implement efficiently. Whereas the persistent
vector works well in general, its performance might degrade the performance or
capacity of a system if used heavily within bottlenecks. By turning persistent structures
to transient data structures inside such bottlenecks, we can further increase the
performance of these structures.

4.1 Definition

Transience can best be explained as removing a data structure’s persistence: An
update on the transient data structure P! returns – just as a persistent data structure –
a new transient P!′. However, in addition, the update will invalidate P!, meaning that
any operation on P! after or during the update is considered illegal. By not preserving
P!, one can perform mutations on P! and return P!′ as the mutated variant.

Definition 4.1. If a transient data structure P! is invalidated, it cannot be used as
argument to any function.

One might ask which category transient data structures are in. They are clearly not
persistent, as they do not preserve previous versions of the structure. People knowing
the internals of a transient might argue that a transient is a mutable data structure,
as it mutates the structure. However, it is not mutable based upon the definition used
by us: Reading a value from a transient will always return the same value, and a
transient has no perceived state or identity. For a user of a transient, the transient is
effectively an immutable data structure which does not preserve older versions of
itself: The mutations inside a transient are not externally visible when used correctly.

To formally define transience, we need some definitions. Let use denote the type
of persistent vectors which contain the type τ by Vτ, whereas a transient vector of
same type is denoted V!

τ. An instance of Vτ will generally be denoted P, whereas its
transient counterpart will be denoted P!.

Definition 4.2. We will denote a function on the data structure type α as

f : α× A1 × . . .× An → B

50

4.1 Definition 51

where the additional n arguments are of type A1 up to An. B is the return type from the
function.

As an example of a concrete function, consider the lookup function lookup presented
in Section 2.3. lookup takes in a persistent vector of type Vτ and a non-negative
integer, returning an instance of type τ:

lookup : Vτ × N→ τ

On a specific persistent data structure, we can categorise functions within two cate-
gories: Functions which read values from the data inside the structure, and functions
which “update” the structure and return a new version of the data structure.

Definition 4.3. A read function fr which only reads values from the persistent collection
type ατ is denoted as

fr : ατ × A1 × . . .× An → B

where B 6= ατ unless τ = ατ.

Definition 4.3 formalises the read functions, and says that those functions cannot
return a new persistent data structure based on the input data structure. The special
case is there as the data structure can of course contain other data structures which
are of the same type.

Definition 4.4. A write function fw which performs an update on the persistent collection
type ατ is denoted as

fw : ατ × A1 × . . .× An → ατ

for all types τ.

Definition 4.4 simply states that the return value of a write function is based upon
the first input value.

Definition 4.5. A transient data structure α!
τ is an immutable data structure based

upon ατ. For any defined write function in the core language

fw : ατ × A1 × . . .× An → ατ

where Ai 6= ατ for all i, there exists a corresponding function

f !
w : α!

τ × A1 × . . .× An → α!
τ

When any function f !
w is called on P!, it invalidates P!.

For any defined read function in the core language

fr : ατ × A1 × . . .× An → B

4.1 Definition 52

where B 6= ατ 6= α!
τ unless τ = ατ or τ = α!

τ, there exists a corresponding function

f !
r : α

!
τ × A1 × . . .× An → B

At any point in time, only a single function f !
r or f !

r can operate on a specific transient
data structure P!.

In addition, there exists two functions which can convert an instance of ατ to α!
τ and

back:

transient : ατ → α!
τ

persistent ! : α!
τ → ατ

The function persistent ! invalidates the transient instance given as input.

Definition 4.5 states that all read and write functions in the core language on the
persistent collection also exists on its transient counterpart, if it is defined. All write
operations invalidates the transient, and at any point in time, only a single transient
function can be called on a specific data structure. In addition, functions that can
convert a persistent data structure to a transient and back must exist.

In addition, we have the following definition for user-defined functions:

Definition 4.6. A user-defined function

f !
uw,m : A1 × . . .× An → B

is a write function on argument am ∈ Am = α!
τ, where 1 6 m 6 n, if and only if

f !
uw,m might call a write function f !

w with am as its first argument, or if f !
uw calls the

user-defined write function g !
uw,k with am as the kth argument.

Definition 4.7. A user-defined function

f !
ur,m : A1 × . . .× An → B

is a read function on argument am ∈ Am = α!
τ, where 1 6 m 6 n, if and only if it is

not a write function on am.

These two definitions simply state that a user-defined function f !
uw,m may, either

directly or indirectly, call a transient update function which invalidates argument am.
A user-defined read function f !

ur,m, on the other hand, will never invalidate am, but
may perform read functions either directly or indirectly.

Based on these definitions, we might expect that we can relatively easily know whether
it is okay to perform transient operations on a value a passed in. If we might end up
calling a user-defined write function or a write function on a, it will be incorrect to

4.2 Implementation 53

call any function with a later on. If we call a function which is a read function, we
must wait until the function has finished before we can call any other function with
a.

However, it is not as simple as that: A function might start up a new thread, and
pass a to the thread. Or a function might save a in a mutable data store, which then
is used by another function or the same function later on. We avoid taking these
cases into consideration, and assume that all read and write functions never do “bad”
things.

4.2 Implementation

While the semantics related to transience is now defined, we have not yet talked
about how we can get the claimed performance benefits discussed in the beginning of
this section. We will explore the ideas used to enable transience in Clojure’s persistent
vectors, maps and sets, with a special focus on how they work within vectors. However,
the same ideas can be used on any tree-based structure.

The definition of transience says that the previous transient P! is invalidated whenever
an update operation is performed. This means that we can safely change nodes which
are only visible to P! by mutating them, as no other structure will see these changes.
The question, then, is how we can detect and ensure that a mutation on a node is
visible for just P! and not any other vector.

One can ensure the node is only visible for P! by attaching an ID on every node in
the trie. For persistent structures, the ID is irrelevant, and we can therefore use NIL

for all persistent vectors. However, transients has to create a unique ID: A cheap way
of creating a guaranteed unique ID is by creating a very small object and put it on
the heap. Then, whenever one has to match IDs on nodes, compare object pointers.

1 function TRANSIENT-CLONE(val, id)
2 if valid 6= id then
3 val′ ← CLONE(val)
4 val′id ← id

5 return val′

6 else
7 return val
8 end if
9 end function

Listing 4.1: CLONE function used in transients.

Now we can do path copying in the same fashion as we have done before. However,
instead of cloning every single node we traverse, we check its ID first. If the ID is
equivalent to the one in P!, we know that the node was created by P! or an invalidated
version of P!. We can therefore safely mutate the node, and thus have no need to

4.2 Implementation 54

4 2

0

3 401 20

8

1 F8

4 2 1 8

(a) Structural sharing between transient and
persistent vector.

5 4

E F8 3 40

8 8

58

8

(b) Vector after persistent! call.

Figure 4.1: Transient vectors.

create a copy. Otherwise, we clone the node, set the ID of the copied node to the
transient ID, and return the copy. Listing 4.1 represents the rather straightforward
implementation of this new CLONE function.

To ensure that the transient is not modified after a persistent ! call, the implementation
NILs the unique ID within the transient vector head. In addition, whenever a transient
operation is used, the unique ID is checked, and if it is NIL, an error is thrown. This is
not necessary in a language which can do this at compile time, but we will see that
this is not easy in the next section.

A specific implementation consideration for the persistent vector is that its tail is
usually compressed. For a transient, however, that would require a new copy of the
tail for each element appended to the transient, which is costly. Therefore, whenever
a transient structure is created, its tail is immediately copied and its capacity is
increased to the max size M. Whenever the function persistent ! is called, the tail then
has to be compressed again.

Let us consider an example of how this would work in practise: For convenience,
we shall consider vectors not using a tail. Assume we have a persistent vector [1,
2, 3, 4] and we call the function transient, followed by updating index 1 to F, 0
to E, appending the value 5 and then finally converting the transient back through
persistent !.

When the transient is first created, the thread ID1 is stored and a random ID is
generated. Then, when we update index 1, and as none of the nodes have the
transient’s ID, normal path copying is done. However, we store the transient’s unique
ID as the ID for the nodes we copy. Figure 4.1a shows the original vector to the left,
and the transient on the right: The transient has in this case been created in thread

1The thread ID is stored to ensure that the transient is used in a single function at any point in
time; see Section 4.4.

4.3 Performance 55

number 1, and has the random ID 8. The leftmost slot in each node represents its ID,
and nodes with the ID NIL has the ID 0.

Next, the value at index 0 is updated to E: In this case, we do not have to perform any
copying, as the ID in the nodes we walk is equal to the transient’s ID. We then attempt
to insert the value 5 into the trie, but as there is no space, we have to increase the
height and create new nodes. The newly created nodes also contain the transient’s
ID. Finally, we call persistent !, and end up with the result visualised in Figure 4.1b.
Note that the leaf node containing the values 3 and 4 is still shared with the original
vector2, and the persistent vector does not modify the nodes created by the transient.

We see that, while persistent vectors create new nodes with the ID NIL, they might
contain nodes with non-NIL IDs. This naturally brings up the question: Should CLONE

explicitly set the ID to NIL? Whether it does or not does not really matter: Recall that
the generated IDs are guaranteed unique, so a transient checking the ID of a node
will not incorrectly mutate a node it does not own. Additionally, we know that all
the IDs in a persistent vector will either be NIL or an ID of a destroyed transient: The
only way a transient can transfer its nodes to a persistent vector is by the function
call persistent !, which invalidates the transient.

The Clojure transients on a persistent vector works somewhat different than the
description given here. Instead of storing the thread ID and a unique ID in the
transient vector head, it copies the root node and stores the thread ID inside an
atomic reference. To check that the transient is used in the thread it was created, it
compares the thread ID with the root’s atomic reference value, and uses the atomic
reference object as unique ID. This difference thus require the implementation to
copy the root to store the new ID, even though the transient may not touch the trie
at all. Apart from that, these differences are effectively only cosmetic, and does not
change the actual semantics.

4.3 Performance

For tree-like structures, the asymptotic runtime will not change. If the node size is
a constant, copying the node size will still be a constant time operation. However,
in many cases, the most considerable part of an operation is memory allocation and
memory copies. A transient will therefore significantly reduce the constant factors
for all operations which require memory allocations.

It is important to realise that transient operations on the trie will at first perform a
path copy in the same fashion as a persistent vector. As such, transients are not a
good fit if you only perform relatively few operations on the vector before turning it
back into a persistent vector. Most bottlenecks will not be related to few operations,
however, but rather huge bulk operations such as appends or updates.

2The original vector is not shown in Figure 4.1b due to lack of space.

4.4 Related Work 56

4.4 Related Work

Earlier work has lead to the definition of linear types, a way to define mutable types
in a similar fashion as transients, with focus on correctness [20]. A linear type can
only be used once, although relaxed constraints provide means to temporarily define
a linear type as nonlinear, which gives users read capabilities without “using” the
instance. In contrast, a transient is an affine type, where the function persistent !

converts the affine nodes permanently to nonlinear, persistent nodes. In addition, use
of linear types provide a system where reference counting and garbage collection
is unnecessary. As such, it is hard to see how one could use linear types directly to
implement transience. However, it seems like a very good starting point to ensure
correct usage of transients, which is currently lacking. The new language Rust is a
programming language with linear types, and an attempt to implement persistent
data structures with transient capabilities in Rust may provide such insights.

1 (loop [t (transient [])
2 i 0]
3 (if (< i 100)
4 (recur (conj! t i)
5 (inc i))
6 (persistent! t)))
7 #_=> [1 2 ’... 99]
8

9 (loop [t (transient {})
10 i 0]
11 (if (< i 100)
12 (recur (assoc! t i (* i i))
13 (inc i))
14 (persistent! t)))
15 #_=> {0 0, 32 1024, ’...
16 63 3969, 95 9025}

(1) Correct transient usage

(let [t (transient [])]
(dotimes [i 100]

(conj! t i))
(persistent! t))

#_=> [1 2 ’... 99]

(let [t (transient {})]
(dotimes [i 100]

(assoc! t i (* i i)))
(persistent! t))

#_=> {0 0, 1 1, 2 4, 3 9,
4 16, 5 25, 6 36, 7 49}

(2) Incorrect transient usage

Listing 4.2: Transient usage in Clojure

Clojure has not a linear type system, and consequently no possiblity to check that
one use transients correctly. It is thus fully possible to use transients erroneously and
get the “expected” result back, as most transient operations just return themselves.
However, as transients may return new values, this may cause confusion for users
which assumes transients are mutable data structures. As an example, Listing 4.2
shows how one correctly use transients on the left side, and incorrect usage on the
right side. While the transient vector ([]) returns the same result, the transient map
({}) returns a new transient after it contains 8 elements, which makes the incorrect
usage returns an erroneous result.

4.4 Related Work 57

To avoid more than one function using the same data structure at the same time,
Clojure forces the user to only use a transient within the thread it was created. This
is done by saving the thread ID in the transient, and by checking that the thread ID is
equivalent for each transient operation. This is also the reason Figure 4.1a contains
the thread ID.

With the exception of Clojure’s notion of transience, there has not – to the author’s
knowledge – been any notable work on increasing performance of persistent data
structures explicitly through transients or linear types. The inliner and SSA optimisa-
tions in Haskell could potentially detect that there is a only a single reference to a local
object, and optimise this by mutating the values instead of creating a new one[21,
22]. However, it seems unlikely that such inlining could provide significant perfor-
mance benefits to a data structure, and it is clearly not targeting such optimisations
explicitly.

Part II

Methodology

58

CHAPTER 5

Direct Append

The most notable performance penalty for the RRB-Tree is related to inefficient
appending: The implementation by Bagwell and Rompf [3] creates a new RRB-Tree
with one element, and merges it into the original RRB-Tree. L’orange [19] also
implements appending this way. Although RRB-trees which are leftwise dense can
reuse the persistent vector appends, it does not help when the tree is not leftwise
dense. However, by modifying the persistent vector append algorithm to work for the
RRB-tree, appending can be performed in effectively O (∼1) time as well.

5.1 Introduction

Modifying the original append algorithm for persistent vectors to work for RRB-trees
is not as straightforward as one might initially expect. As described in Section 2.5, a
persistent vector implementation must generate new empty nodes when there is not
enough space in the original trie. This is trivial in the persistent vector through the
radix index search: When the size of the vector is Mh(P)+1, we know that it is fully
dense, and therefore we increase its height. When the algorithm attempts to walk a
table entry which is NIL, it generates a new empty node.

The problem with the RRB-tree is that the M-ary representation of an index does not
tell us which branch to go: As the table entry to walk varies based upon the contents of
the size tables, one cannot know there is enough space in the rightmost node without
walking down to it. Additionally, all the rightmost nodes may all contain M nodes
even if |R| < Mh(R)+1, meaning that one cannot insert an element without either
increase the RRB-tree’s height, or through rebalancing. Consequently, an append
algorithm for the RRB-tree has to, in the worst case, walk all the rightmost nodes in
a vector to ensure there is space enough in the original trie.

The question then, is what the algorithm should do if there is not enough space in
the rightmost nodes. Should it attempt to rebalance, or should it just increase the
height of the tree? The algorithm explained here just increases the height of the
tree: As it is not unlikely that there will be other appends in the future, there may be
several rebalancing steps in the future if the height does not increase. If the height

59

5.2 Implementation 60

1 2 3 4

5 4

5

2 3

3 5

1 2

3 6

1 3

5 6

6 4

Figure 5.1: Direct appending

does increase as a result of rebalancing, then the rebalancing is just a costly way to
perform the height increase.

By not performing a rebalancing, this can clearly break the invariant: Assume that all
the n lowest level rightmost nodes in the tree are fully populated, 0 being the lowest
level. Adding another child in the rightmost node at level n with a single slot breaks
the invariant. This is, however, fortunately the only node affected. A concatenation
will fix the invariant break, just as with slicing.

If consecutive appends are applied, the n lowest rightmost nodes will always be
leftwise dense, thus they can never break the invariant. When the rightmost node is
completely populated, the rightmost node at level n will again satisfy the invariant:
Adding a fully dense child to a node which satisfies the invariant will never break the
invariant. Another append can do one of two things: Either the rightmost node at
level n is not completely full, and we end up with the original case just described. Or,
if the rightmost node at level n is fully populated, the same case happens with the
rightmost node at level n+ 1.

A height increase will not break the invariant for the original root, but may break the
invariant for the new root. This case is again covered, as the root is a rightmost node
in the trie. The direct append algorithm will therefore not break the invariant in a
way which will increase the height considerably, and the invariant can be restored by
concatenations.

5.2 Implementation

The direct append algorithm is presented in Listing 5.1, and implements the idea
described in previous section. COPYABLE-COUNT returns two arguments: nc, the
number of copyable nodes, and pos, the position in the last copyable node which is
NIL. A node is copyable if there is enough space in either this node or in one of its
rightmost descendants: The algorithm will copy the node as it still possible to insert
an element in the rightmost part of this subtrie.

5.3 Direct Pop 61

1 function RRB-PUSH(R, elt)
2 R′ ← CLONE(R)
3 |R′|← |R|+ 1
4 nc,pos← COPYABLE-COUNT(R)
5 if nc = 0 then . Not enough space in orig. rrb
6 R′root ← CREATE-INTERNAL-NODE()
7 R′root[0]← Rroot
8 σ(R′)←CREATE-SIZE-TABLE*(Rroot) . Create size table if needed
9 T ← APPEND-EMPTY(R′root, 1, h(R) + 1)
10 T0 ← elt
11 else
12 T ← COPY-FIRST-K(R, R′, nc)
13 T ← APPEND-EMPTY(T, pos, h(R) + 1 − nc)
14 if h(R) + 1 − nc = 0 then . Enough space in orig. leaf node
15 Tpos ← elt
16 else
17 T0 ← elt
18 end if
19 end if
20 return R′

21 end function

Listing 5.1: RRB-PUSH using direct appending

The function COPY-FIRST-K, as should be evident from its name, copies the first k
search steps in the RRB-tree, inserts them into the new RRB-tree, and returns the
last copied node. In addition, it updates the size table to the copied nodes, to reflect
the change in size. APPEND-EMPTY simply appends k empty nodes in the trie T in its
table entry pos. The implementations of these helper functions are further described
in Section A.2.

As an example, consider the leftmost vector in Figure 5.1. To append 6 to it, the path
down to the rightmost leaf node is walked. We can still insert elements into said
node, therefore there are nc = 3 copyable nodes, and pos = 1 as that is where the
next element is going to be placed. As h(R) + 1 − nc is zero, we create zero empty
nodes, and insert the element at position pos. Notice that the size tables were copied
and updated. If the nodes does not contain a size table, then nothing has to be done
related to size tables: The trie will still be leftwise dense after the insertion.

5.3 Direct Pop

The opposite operation, POP, could also use the same ideas to get additional perfor-
mance improvement. In contrast to the direct append implementation, we always
know the path down to the element to remove: For a non-leaf subtrie T, walk table
entry ‖T‖− 1. If we are in the leaf node, remove the rightmost entry, and if the right-
most entry is at index 0, return NIL, and repeat at the level above. This is equivalent

5.4 Performance 62

to the naïve implementation first explored in Section 2.6. Is it possible to improve this
implementation? The improvements discovered for the persistent vector only applies
when a subtrie is fully dense, which is not the case for an RRB-tree. Preferably, the
implementation avoids both unnecessary memory allocations or recursive functions,
in order to avoid unnecessary overhead.

We can do this by keeping all elements we traverse in a stack, then “rewind” by going
backwards. In that way, we both avoid the overhead of a recursive function call,
and we do not allocate new nodes which may potentially be empty. Listing A.6 in
Appendix A contains the algorithm for this implementation of RRB-POP.

Direct pop may also break the search step relaxed invariant. Again, as it can only
happen with the the rightmost nodes, the invariant will either be satisfied by next
concatenation, or it will eventually be resolved through further pops or appends.

5.4 Performance

Next, let us have a look at the performance of the direct append algorithm: In the case
of a height increase, we create h(T) + 2 new nodes: h(T) + 1 from APPEND-EMPTY,
and one which is used as the new root. In this case, the runtime is O (M logMl(|R|).

Otherwise, in the worst case, there is enough space in the rightmost leaf node. We
must then copy each node and their size table, if they have one. As a copy takes O (M)
runtime, this runtime is O (2M logMl(|R|).

Finally, we may end up having onlym copyable nodes out of h(R)+1. In that case, the
remainingh(R)+1−m nodes will not contain a size table, as they can safely be leftwise
dense. Therefore, this total runtime lie, in the worst case, between O (M logMl(|R|)
and O (2M logMl(|R|). As such, the worst case runtime is O (2M logMl(|R|).

There is no extra overhead for the relaxed radix search, in contrast to a slice: We
always walk the rightmost node, regardless of the size table. As the size of a node is
contained in it, the search step takes constant time for each node.

The more appends we use on the RRB-tree with this algorithm, the algorithm gets
potentially faster: More and more of the RRB-tree turns leftwise dense, meaning that
fewer and fewer size tables get copied. If the RRB-tree had a size table to begin with,
we end up only having to copy the size table of the root node after enough appends.

If the RRB-tree R already satisfies dleft(R), then this algorithm returns an RRB-
tree R′ which also satisfies dleft(R′). This is to be expected, as the algorithm is a
generalisation of the persistent vector append.

5.5 Further Optimisations

The function COPYABLE-COUNT needs in the worst case scenario to walk the full tree
down to a leaf node. However, it is trivial to deduce how many nodes we must copy

5.5 Further Optimisations 63

in a leftwise dense subtrie T, given the index i we’re inserting at. Recall that, for
persistent vector appends, i = |T|, consequently the index of the last element in T is
i− = i− 1.

Now, if i = cap(T), T cannot contain any more elements, and we can copy zero nodes
from this subtrie. However, if i < cap(T), we partition i and i− into h(T) partitions
containing b bits each, M = 2b. The copyable node count in T will be the amount of
equal partitions in a row between i and i−, starting with the partitions containing
the most significant bits.

This computation require no tree walking, consequently no cache misses can occur.
Assuming that none of the cache lines looked up are replaced while we perform
the append, we avoid h(T) − nc(T) potential cache misses: As we have to rewalk
nc nodes, only the potential cache misses of non-copyable nodes we visit will be
unnecessary.

CHAPTER 6

RRB-tree Tail

Section 2.7 discusses the tail of a persistent vector, designed to increase performance
on operations operating around its end. It seems reasonable to assume that attaching
a tail to RRB-trees will increase their performance, perhaps most notably for appends
and pops. This chapter will therefore explain how a tail can be implemented for the
RRB-tree, along with elaboration on specific considerations which are not necessary
for the persistent vector.

6.1 Implementation

The first implementation consideration for the persistent vector’s tail was the benefits
of a nonempty tail. Recall that a nonempty tail gives constant time last, clearly
better than O (logM |P|). However, the nonempty tail made the tail length calculations
somewhat more complex. For the RRB-tree, however, we cannot calculate the length
of the tail, nor its offset, only based upon the total length of the RRB-tree. As the tree
is relaxed, a given size may be represented in different ways, some of which may
affect the size of the tail. We therefore use the length field in the tail in an RRB-tree
to calculate both its length and the tail offset. To avoid the tail indirection and a
potential cache miss, the RRB-tree head also contains the tail length, Rtl. The offset
calculation is thus simply

|R|− |Rtail| = |R|− Rtl

With the exception of length calculations, checking whether an element is in the tail
or inserting the tail into the trie then works in the exact same fashion. When the
tail is going to be inserted into the trie, we could either use CONCAT or the direct
append method explained in Chapter 5. To retrieve a tail from the trie, we could use
the direct pop algorithm, described in Section 5.3. It is also possible to traverse the
rightmost nodes, pick the leaf node, then slice off the leaf node’s length. Although
slicing in general may break the invariant at multiple levels, cutting off a single node
will in the worst case only break the invariant at the parent of the lowest non-NIL

returned, as described in Section 5.3.

64

6.2 Interference with Direct Append 65

Concatenation could easily be done by realising that A ++ B does not have to modify
the tail of B. As such, the seemingly only modification needed to enable concatenation
is by inserting the tail of A into the root of A before concatenating it with B. If we use
concatenation to insert the tail, a concatenation then becomes

A ++ B = (Aroot ++ Atail) ++ B

where the result has the same tail as B.

Slicing could be done by inserting the tail of the RRB-tree into the trie, perform a
normal slice, then promote a new tail again. Although easy, this algorithm is clearly
inefficient. A better solution checks whether any of the indices are above or equal to
the offset of the tail. There are only three cases to consider in this case, assuming the
lower index is less than or equal to the upper index:

1. The lower index is equal or greater than the tail offset.

2. The upper index is greater than the tail offset.

3. The upper index lower than or equal to the tail offset.

For case 1, the remaining parts of the RRB-tree is a slice of the original RRB-tree tail,
and can easily be copied over to another tail. In this case, the new RRB-tree root will
be NIL.

For case 2, a left slice is done on the trie as explained in Section 3.5. In addition, the
tail will be partially cut if the upper index is less than the original RRB-tree length.

For case 3, the usual slice operation is done on the trie, and the original tail is
discarded. A new tail is promoted as previously explained. This is safe, as both the
left and right slice operations operate on indices inside the trie.

The operations mentioned here work perfectly well in isolation from any other
optimisation. However, the concatenation and slicing operations may cause big issues
in conjunction with the direct append algorithm, if not special care is taken.

6.2 Interference with Direct Append

The direct append algorithm in isolation works on single elements. It is easy to
modify the algorithm to consider leaf nodes instead of single elements, but there is a
subtle case when working on RRB-trees. Consider a newly sliced RRB-tree R where
M < |R| < 2M: All the elements are stored either in the root node Rroot, which is a
leaf node, or the tail, Rtail. In this case, could |Rroot| < M?

6.2 Interference with Direct Append 66

Regardless of whether |Rroot| < M, R will still satisfy the invariant. However, that is
not the issue: Recall that the direct append function was designed to store a single
element at a time. As such, whenever there is not enough space in the trie, the height
of the trie is increased by one. For root nodes without size tables, the direct append
function then implicitly assume that the trie is fully dense – which is clearly not the
case if |Rroot| < M!

This problem can be generalised: If the RRB-tree is a leaf root, or the rightmost leaf
root has a leftwise dense parent, could its rightmost leaf node contain less than M
elements? And if so, how should we insert the tail?

One option would be to insert the tail in the next empty slot, then modify its parents
to contain size tables. This would, however, create an otherwise leftwise dense trie to
a relaxed trie earlier than necessary. Preferably, then, the algorithm copy elements
from the tail over to the rightmost leaf node, so that the original rightmost leaf node
contains exactly M elements. The remains of the tail node is then inserted. However,
this would require the algorithm to perform the same steps next time a tail is inserted,
which is clearly inefficient. Instead, we could imagine that the remains is passed back
up and reused as tail.

But at this stage, all the different checks makes the algorithm complex and therefore
hard to implement correctly. The concatenation algorithm cannot reuse the algorithm
used to push down the tail, as it has to push down the tail even if it is not completely
full. In addition, the append function would be faster if it could avoid all those checks:
If this special case could be eliminated, appending would both be simpler and more
efficient.

For this reason, we would like to avoid dealing with these problems in the append
algorithm, and instead do extra work in the concatenation and slicing algorithm. We
do this by creating an invariant which ensures that the append algorithm can work
without thinking about these special cases. The initial attempt at an invariant looks
as follows

In any RRB-tree R where h(R) = 0 or where the parent T of the rightmost
leaf node satisfies dleft(T), the rightmost leaf node in Rroot must contain
exactly M elements if it exists.

however, we shall see that the nature of the RRB-tree concatenation and slice algo-
rithms enable us to simplify the case to the following invariant:

Invariant 6.1. In any leftwise dense RRB-tree R, the rightmost leaf node must contain
exactly M elements if it exists.

We will explain why this is sufficient later in this section, but assume for now that
this is the obvious necessary requirement for an RRB-tree.

6.2 Interference with Direct Append 67

E4 2

(a) Invariant broken

E4 2

(b) Invariant satisfied

Figure 6.1: RRB-trees breaking and satisfying tail invariant

Figure 6.1 shows an example of two RRB-trees with a tail. Figure 6.1a breaks the
invariant because its leaf node contains 3, not M = 4 elements. Figure 6.1b satisfies
the invariant as the rightmost leaf node contains exactly M elements.

How can we ensure that the invariant is satisfied by the concatenation algorithm?
If we assume both RRB-trees satisfy the invariant, then this is only a concern if the
RRB-tree R returned satisfies dleft(Rroot). This can only happen in one case:

Let A+ be A after tail insertion. A+ and Broot are leftwise dense, and Broot
can be placed within A+ without any rebalancing.

Why could it not happen in any other case? Because an RRB-tree that is not leftwise
dense must have a root containing a size table. Concatenation will not be able convert
this part of the concatenated trie to be leftwise dense, otherwise it would have already
happened. Therefore, some part of the concatenated RRB-tree will not be leftwise
dense and it follows that the whole tree by definition cannot be leftwise dense. As
such, any other case will satisfy the invariant.

For the case mentioned, we have two potential outcomes: We could end up with a
leftwise dense trie, or we could end up with a relaxed radix balanced trie. If the latter
occurs, the invariant is kept by definition. If the result is a leftwise dense trie, then
the rightmost leaf node will either be the rightmost leaf node in Broot or Atail. If it
is the rightmost leaf node in Broot, we satisfy the invariant assuming B satisfies the
invariant. This leaves us with the case where Atail is the rightmost leaf node.

There is only one case where Atail satisfy the invariant: If and only if |Atail| = M. To
handle the other cases, we simply merge the tails, and push down a leaf node if the
tails contain too many elements to be put into a single tail. Listing 6.1 shows how this
is handled within the RRB-tree concatenation algorithm. The function PUSH-DOWN-
TAIL takes the old RRB-tree, the new RRB-tree, and the new tail. It then mutates the
new RRB-tree so that the tail it currently points to is pushed down, sets the new tail
as new tail, and returns the new RRB.

6.2 Interference with Direct Append 68

1 function RRB-CONCAT(L, R)
2 . . .
3 if Rroot = NIL then
4 P ← CLONE(L)
5 |P|← |L|+ |R|
6 if |Ltail| = M then
7 |Ptail|← |Rtail|
8 return PUSH-DOWN-TAIL(L, P, Rtail)
9 else if |Ltail|+ |Rtail| 6 M then
10 Ptail ← LEAF-NODE-MERGE(Ltail, Rtail)
11 |Ptail|← |Ltail|+ |Rtail|
12 return P
13 else . |Ltail|+ |Rtail| > M
14 Ptail ← LEAF-NODE-CREATE(M)
15 COPY-ELEMENTS(Ptail, Ltail, |Ltail|)
16 COPY-ELEMENTS(Ptail, Rtail, M − |Ltail|)
17 |Ptail|← |Ltail|+ |Rtail|− M
18 t← LEAF-NODE-CREATE(|Ptail|)
19 COPY-LAST-ELEMENTS(l, Rtail, |Ptail|)
20 return PUSH-DOWN-TAIL(L, P, t)
21 end if
22 end if
23 . . .
24 end function

Listing 6.1: Code in RRB-CONCAT to satisfy RRB tail invariant.

Next, let us look at slicing, but let us assume that we need to satisfy the initial attempt
at the invariant. If we look back at the different slice cases, we see that case 1 can
not break the “invariant”: Case 1 will always return an RRB-tree where Rroot = NIL.
However, both case 2 and 3 could potentially break the “invariant”: We must ensure
that the rightmost leaf node contain exactly M elements if its parent is leftways dense.

Assume that the original tree satisfies this condition. In case 2, we will not do a right
slice in the trie, only a left slice. In addition, all nodes affected by the left slice will
contain a size table, with the exception when the new root is a single leaf node. It
is therefore easy to check whether case 2 will satisfy the new invariant or not: If
h(R′) = 0, then |Rroot| must either be 0 (in which case Rroot = NIL) or M to satisfy
the invariant. Otherwise, we have to distribute the elements over the root and the
tail: If |R| 6 M, we put all the elements in the tail, otherwise we put M in the root
and the remaining ones in the tail.

Case 3 has to consider this case, but also another case as well, which happens very
infrequently. Assume we have cut through a leaf node, such that the parent of the
rightmost leaf node is leftwise dense. Regardless of how many elements there are in
that leaf node, we promote it as a new tail. Now, three cases can happen:

6.2 Interference with Direct Append 69

1. If there are more leaf nodes in the parent node, they must be fully populated,
and we satisfy the “invariant”.

2. If the parent node has no other leaf node, move up to the first ancestor that
will still have a child after tail promotion. If the ancestor is leftwise dense, then
its rightmost node must be fully dense by definition.

3. If the parent node has no other leaf node, move up to the first ancestor that
will have a child after the tail promotion. If the ancestor is not leftwise dense
(contains a size table), we are not sure whether the “invariant” is satisfied or
not.

The last case here is the problematic one. If the leaf node contains less than M
elements, and its parent is leftwise dense, we have broken the “invariant”!

However, the concatenation algorithm has already solved this problem for us: The
leftwise dense subtrie must have been created either by the direct append algorithm
or a concatenation, as it originally had elements right of itself. If the direct append
algorithm was used, then we know that the leftmost leaf node contains exactly M
elements, as tail insertion only happens when the tail is full. If the concatenation
algorithm was involved, then the rightmost leaf node may contain less than M
elements.

But that is fine, because we know that the parent node must have been part of a
concatenation. As such, for the parent node to be leftwise dense, it must be fully
populated: We can therefore not insert more elements into the parent. This logic
also applies to any ancestor above it: As the concatenation algorithm completely
populates the leftmost node, a node can only retain its leftwise density if either the
node is already completely populated, or if the rightmost leaf node is fully dense and
the node to concatenate with is leftwise dense. This follows up until we reach the
node with the size table.

Why is this not a problem for the direct append algorithm? When direct append walks
the rightmost nodes, it discovers that none of the nodes below the one with the size
table is copyable: There is not enough space for a new leaf node there. As such, it
instead creates a new branch right for the leftwise dense trie in which it stores the
leaf node to push down. As the node contains a size table, this is completely fine.

There is only one issue which remains: What happens if the ancestor with the size
table is the root node, and the root node now contains a single child? The child will
be promoted as root, and is leftwise dense. Now, when the direct append algorithm
attempts to push the old tail down, it realises there is not enough space. As such, it
creates a new root node without a size table, as it assumes the leftwise dense trie is
fully dense.

Although height increases in tries happen infrequently, this very specific instance
happens even less frequent. As such, we decide to make the slice function responsible
for ensuring that the invariant is kept.

6.3 Display 70

While the invariant does make the concatenation and slice algorithms somewhat
more complex and slightly more expensive in some specific cases. However, the price
paid is insignificant if we perform only slightly more appends than concatenations
and slices.

6.2.1 Direct Pop Interference

The direct pop implementation is also affected by the tail. However, the invariant is
already covered by the last slice case: The tail promotion in the slice algorithm is
equivalent with tail promotion in the direct pop algorithm, meaning that the direct
pop algorithm has to consider exactly the same cases: If the height of the trie is
reduced as a result of the tail promotion, check if the new trie is leftwise dense. If it
is, we have to ensure that the rightmost leaf node contains M elements.

6.3 Display

One could consider generalising the RRB-tree tail to a display in the same fashion as
done with the persistent vector in Section 2.8. However, there are disadvantages to
displays in RRB-trees, mostly related to the fact that the RRB-tree may not be leftwise
dense. In the persistent vector display, finding the lowest common ancestor needed
no tree walking: We could find the lowest common ancestor by just comparing the
old index and the index to access/update as the search steps were independent. This
is not always possible in the RRB-tree due to its relaxation.

To gain the same performance guarantees, the display also needs to contain the
upper and lower index of the elements a node contains. This would require an
additional overhead on the vector head, and more coordination whenever the display
is changed. Whereas it seems likely that this could speed up some specific use cases,
the additional overhead could also make it inefficient as a general-purpose RRB-tree.
Proper benchmarking is needed to confirm or reject any of these hypotheses. However,
it is clear that a display would make the implementation much more complex, leading
to higher chance of bugs. Adding a display to the RRB-tree is therefore left as future
work, although interesting.

6.4 Performance

Based upon results from the persistent vector tail improvement [9], one could expect
the RRB-tree to be at least 2 to 5 times faster. It is not unfeasible that the performance
benefits may be even greater, as the access algorithm require both more memory
accesses and has more overhead. However, this assumes that the environment is not
a factor. The persistent vector results are from a different environment – the JVM –
which likely affects the results to some degree.

CHAPTER 7

RRB-tree Transience

7.1 Introduction

On its own, adding in a transient version of the RRB-tree seems not only like a good
way to increase performance, but also very easy to implement. Recall that transience
on the persistent vector increased its append performance significantly. As the RRB-
tree algorithms may have to copy size tables as well, they would potentially have to
copy an additional h(R) structures compared to the persistent vector implementation.
Thus, if allocating memory and copying is one of the bigger bottlenecks, we should
see considerable performance increases.

However, implementing transience on the RRB-tree could require us to somewhat
extend the definition of a transient. Recall that Definition 4.5 implicitly states that
the first argument to a function defines whether it is a reading function or a writing
function on the transient α!

τ. But what about confluent data structures, like the
RRB-tree? Their concatenation function takes two arguments in, both of which are
used to return an “updated” value back. This is problematic: If we have the function

++ : ατ × ατ → ατ

then what should the corresponding transient function be? It could be either one of
these, or even both:

++ !
w : α!

τ × α!
τ → α!

τ

++ !
w : α!

τ × ατ → α!
τ

It also depends on how one philosophically decide to define ++ . Does it read the
second element, or does it “update” both of the values? If it only “updates” the first
element, then the type signature α!

τ × α!
τ → α!

τ is confusing: The second α!
τ is then

borrowed, not invalidated. Denoting a function writable or readable through fw
and fr is clearly not sufficient for confluently persistent data structures, as different
arguments may either be borrowed or invalidated. As such, one should preferably be

71

7.2 Implementation 72

able to specify whether the type is borrowed or invalidated on the type of the input
argument.

Another problem with Definition 4.5 is the specification on how many times a single
transient can be used:

At any point in time, only a single function f !
w or f !

r can operate on a specific
transient data structure P!.

However, assume we have the following application of the transient function ++ !,
where both arguments are invalidated:

a++! a 7→ a′

Is this application legal? According to Definition 4.5, yes. However, from an imple-
mentation point of view, this could potentially return erroneous results: Mutating any
part of a will necessarily change both input values, unless parts of them are copied
beforehand. Clearly, the definition needs to also ensure that the the transient is only
used once in a function call.

There is another option, which is both easier and more sensible for this thesis: To
not provide operations for transients with more than one argument of type ατ when
τ 6= ατ. Indeed, the eagle eyed reader may have noted that Definition 4.5 explicitly
states that a write function is only defined as a write function if Ai 6= ατ for all i,
meaning that confluently persistent functions are not, by the definitions, write nor
read functions.

As the main goal of this thesis is to provide efficient appending, improving concate-
nation speed is of a less concern and could rather be left as future work. Additionally,
the implementation of transience we will use will check whether the function call is
called in the thread owning the transient. The parallel grep implementation further
explained in Chapter 8 will only make a single RRB-tree per thread, and as such, any
transient concatenation cannot be performed on two transients from two different
threads. Finally, as there will be very few concatenations compared to appends in a
real system, the actual benefits of a transient concatenation may not be as important
for overall performance.

7.2 Implementation

One of the results of the transient constraint is that the RRB-CONCAT function cannot
be used by RRB-PUSH. As a result, any transient implementation has to use direct
appending in order to be able to support pushing and popping. While not directly a
problem, it means that it not possible to measure the performance of transience in
isolation.

7.2 Implementation 73

Another consideration is what one should mutate. In the persistent vector, all nodes
could be transient. An RRB-tree may contains size tables as well. It seems reasonable
to assume that mutating size tables instead of creating new ones for every trie insertion
would speed up their performance. Consequently, the transient implementation also
adds an ID to size tables and mutates them when it is safe to do so.

As the implementation is done in C, there is no way to ensure that the transients are
not used in multiple function calls and not misused at compile time. To ensure some
sort of safety, the same constraints used in Clojure is incorporated: Only the thread
owning the transient can perform update operations on it, and the persistent !-call
will set the transient’s ID to NIL.

If the implementation uses a tail, then the tail will – as the Clojure’s persistent vector
– be expanded to avoid unnecessary copying. In addition, the same technique will be
used on all size tables, internal nodes and leaf nodes: While not problematic for a
persistent vector implementation, an RRB-tree might decide to keep nodes as small
as possible. After the persistent !-call, the tail will be compressed, although nodes and
size tables in the trie will not. As a result, the RRB-tree conversion operations have
the same performance guarantees as the persistent vector implementation: O (M).

There are not any other major differences, and the optimisation does not interfere
with other optimisations discussed in this thesis. The algorithms are modified as
explained in Chapter 4, and use a similar version to the TRANSIENT-CLONE algorithm
presented in Listing 4.1. The only notable “difference” is that many values which
from the current version of RRB-tree in the algorithms, is saved on the stack before
the destructive modification happens.

Figure 7.1: RRB-tree with tail and transient

CHAPTER 8

librrb and pgrep

In order to measure the optimisations explained in the last three chapters, they have
to be implemented and benchmarked. This require two things: An implementation
of the data structure itself, and some way to benchmark the implementation. The
result is a C library, librrb, which provides a garbage collected variant of the RRB-
tree. In addition, the parallel program pgrep – a naïve parallel version of grep – is
implemented to measure the performance of the RRB-tree.

8.1 librrb

librrb is an implementation of the RRB-tree in C with the option to configure the
branching factor size to some power of two, and turn on and off different the opti-
misations which has just been described. For configuration, the automake tools are
used. Appendix D contains a list of functions defined in the library, along with its
effective runtimes and what they do.

The different options are enabled and disabled by the #ifdef and #ifndef prepro-
cessor macros in C. As there are 3 different optimisations which all interact with
each other in some way, the code can be somewhat difficult to read as there is a
considerable amount of permutations. Code for non-transient functions is contained
in rrb.c, and the transient counterparts lies within rrb_transients.c. All options
are listed in Appendix D, with a short description on what they do.

8.1.1 Loop Unrolling

As an attempt to increase performance, some functions within librrb is manually
loop unrolled: rrb_nth and rrb_update. This is done by converting the for loop
into a switch statement, in which the first statement is the highest possible shift, the
second the second highest shift, and so on.

Normally, this could be done by hand. However, as the branching factor changes, so
does the shift and the maximal height. As such, another approach has to be used to

74

8.1 librrb 75

dynamically change the unrolling. The idea is to utilise the C preprocessor capabilities
in order to emit the correct amount of iterations, based upon the max treie height .
However, the C preprocessor does not allow #defines to recursively call themselves.
Therefore, we abuse #if statements and #include preprocessor flags: Using them
correctly, we can compare an iteration value with the desired amount of iterations. If
the iteration value is lower than the desired amount, we emit the contents of “loop
body” macro, increment the iteration value and recursively include this file again,
simulating an actual loop. Otherwise, we undefine the definitions used and stop. This
trick is used in the src/unroll.h file.

switch (RRB_SHIFT(rrb)) {
#define DECREMENT RRB_MAX_HEIGHT
#include "decrement.h"
#define WANTED_ITERATIONS DECREMENT

1082 #define REVERSE_I(i) (RRB_MAX_HEIGHT - i - 1)
#define LOOP_BODY(i) case (RRB_BITS * REVERSE_I(i)): \

if (current->size_table == NULL) { \
const uint32_t subidx = (index >> (RRB_BITS * REVERSE_I(i))) \

& RRB_MASK; \
1087 current = current->child[subidx]; \

} \
else { \

current = sized(current, &index, RRB_BITS * REVERSE_I(i)); \
}

1092 #include "unroll.h"
#undef DECREMENT
#undef REVERSE_I

case 0:
return ((const LeafNode *)current)->child[index & RRB_MASK];

1097 default:
return NULL;

}

Listing 8.1: Example of manual loop unrolling, from src/rrb.c.

Listing 8.1 shows the usage of the manual unroll implementation. sized represents
the relaxed radix search algorithm, the WANTED_ITERATIONS definition specifies the
total amount of iterations wanted, and the LOOP_BODY definition defines the loop
body. The decrement definition is used as the last case within the switch statement is
a special case and has to be handled differently.

8.1.2 Threading

To ensure that the transients are called in a single thread, librrb must be able to
get the current thread’s ID and be able to compare it with another thread ID. In this
way, the transient RRB-trees can store the thread they were created in and compare
it with the thread transient functions is called in.

8.1 librrb 76

The pthread library is used to receive and compare thread IDs, as it is available in
almost all Unix-like operating systems that are POSIX-conformant. However, as the
only requirement for librrb compliance is returning and comparing thread IDs, it
not a problem to replace pthread with another library of choice1. The only required
change to replace pthread with some other library is to edit macros defined within
src/rrb_thread.h.

8.1.3 Garbage Collection

As the RRB-Tree is a persistent data structure, subsequent “modifications” use shared
structure for better performance and memory usage. As such, some sort of garbage
collection must be performed to avoid memory leakage.

A reference counting algorithm could be a viable option for programs where the
memory overhead of a garbage collector would be too large. However, Jones et al.
[23, pp. 58-60] argues that a naïve reference counting algorithm “is impractical for
use as a general purpose, high volume, high performance memory manager”. As parts
of the goal of this thesis is to implement a general purpose, high performance data
structure implementation, implementing the reference counting by hand seems to not
be a fruitful approach. Of course, more efficient reference counting garbage collectors
provided as libraries could be used.

Another option would be to use the shared_ptr template provided by the Boost
library for C++. However, the Boost library only enforces atomicity when manipu-
lating reference counts, meaning that concurrent threads can modify shared_ptr
instances simultaneously. This is sufficient for nonconcurrent programs, but poses
additional implementation details and additional overhead for parallel programs,
where concurrency is inevitable. shared_ptr has other complications as well, such
as its inability to properly support const pointers[24].

Using a garbage collector library with support for threads is therefore likely a sensi-
ble choice. The C and C++ Boehm-Demers-Weiser conservative Garbage Collector2

(Boehm-GC) was chosen as it is both stable, robust and well tested. It is easy to set
up, as the only work to be done is to replace allocation calls, remove deallocation
(free) calls, and add in specific define flags to the garbage collector in executable
programs.

Many of these features are desirable, but the most important one is that it is compatible
with the pthreads library “out of the box”, in contrast to naïve reference counting
algorithms and use of shared_ptr. For this reason, the implementation itself does
not have to handle locking of pointers, nor freeing memory – this is left to robust and
well tested libraries instead.

1Provided the thread library works with the garbage collector used.
2http://www.hpl.hp.com/personal/Hans_Boehm/gc/

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

8.2 pgrep 77

I/O

1

2

P
...

Find lines Concatenate
Find lines

w/ search term
Concatenate Print result

1

2

P

...

1

2

P

...

1

2

P

...

Figure 8.1: Different computation stages in the parallel grep implementation.

However, depending on a garbage collector has disadvantages. The Boehm Garbage
Collector is a heavy dependency, and for optimal use, the whole program along
with libraries should use it. Using libraries which uses malloc and free from the
standard library can be tedious: As Boehm-GC is unable to see pointers inside memory
allocated with malloc, data may be garbage collected if not consideration is taken
when inserting pointers into structures. Additionally, depending on a specific garbage
collector depends on its performance, which may not be optimal.

For these reasons, the Boehm-GC is not tightly coupled with librrb: All code includes
the header file src/rrb_alloc.h containing macros related to memory allocation.
This makes it is easy to replace the Boehm-GC with another garbage collector option
if necessary.

8.2 pgrep

Grep is a program which takes a pattern to match against, one or more files, and prints
all lines matching that pattern. The implementation of grep using RRB-trees, pgrep,
program is a naive implementation of grep, where the computation is performed in
parallel. The pgrep implementation only matches fixed strings, and the matching
algorithm itself is not intended to be efficient, but rather mimic real world parallel
programs which uses well-known optimisation patterns [25].

8.2.1 Computation Stages

The parallel grep implementation with its different computation stages is presented
in Figure 8.1 . We first load in the file to read from disk, which is done by a single
thread. After that, we create P threads which find line starts and ends in a contiguous
part which is 1

P of the file. As all threads have to keep their own local list, the next
step is to concatenate these lists together to one list. This is done in parallel through a
reduction. In the search phase, the lines are evenly distributed: All P threads process a

8.2 pgrep 78

41 2 3 65 70

2 3 4 5 6 710

4 5 6 72 310

4 5 6 72 310

Figure 8.2: A parallel concatenation with P = 8 threads.

contiguous part of the lines, equal to 1
P of the total line count. After this step is done,

another reduction is performed to get all the matched lines in a single list. Finally,
this list is printed by a single thread.

As mentioned, the program utilises optimisation patterns explained by Stratton
et al. [25]. The line find and line search step utilises privatisation, and the first
concatenation step is performed so that regularisation can be done. Additionally,
leaving the line intervals in ascending order rather than out-of-order helps cache
utilisation, and consequently performance.

The reduction step is visualised in Figure 8.2: The idea is that one concatenate the lists
together in parallel by pairing the remaining threads in order. The pairs concatenate
their lists, and when they are finished, the right thread in the pair leaves, while
the left thread keeps the result and is paired with another thread. This process is
performed until only the first thread remains.

All parallel stages could be done in a single step, removing the need to stop and start
up new threads. However, such an implementation would restrict timing possibilities:
The different stages may overlap and cause calculation or concatenation time to be
smaller/larger than the actual count. Whereas overall performance degrades, this
design choice should not make any data structure faster or slower compared to other
structures.

8.2.2 Work Distribution

The work distribution schedule known as static chunking[26], giving each processor
a N

P -sized chunk, is optimal when the amount of work per element takes the same
amount of time. However, in many situations, the workload per element is not known
a priori, and all other processors may end up waiting on a single processor finishing its
chunk. To ensure better load balancing, adaptive stealing can be performed through
frameworks such as the Scala Parallel Collection Framework[27] or Cilk[28]. As

8.2 pgrep 79

adaptive work stealing algorithms restrict timing possibilities, static chunking was
chosen as work distribution schedule.

1 // barrier before merging result, to avoid race conditions
2 uint32_t sync_mask = (uint32_t) 1;
3 while ((own_tid | sync_mask) != own_tid) {
4 uint32_t sync_tid = own_tid | sync_mask;
5 if (thread_count <= sync_tid) {
6 // jump out here, finished.
7 goto concatenate_cleanup;
8 }
9 pthread_barrier_wait(&barriers[sync_tid]);

10 // concatenate data
11 concat_and_replace_own(intervals[own_tid], intervals[sync_tid]);
12 deallocate_if_needed(intervals[sync_tid]);
13 sync_mask = sync_mask << 1;
14 }
15 pthread_barrier_wait(&barriers[own_tid]);

Listing 8.2: Concatenation algorithm.

Listing 8.2 shows the concatenation algorithm used for the pgrep implementation.
Whereas this is a non-optimal concatenation strategy for the array list, it represents
a more realistic benchmark for scheduling schemes more sophisticated than static
chunking. In fact, adaptive load balancing schemes are likely to perform more con-
catenations than the algorithm in Listing 8.2, as they usually split up work in more
chunks.

Part III

Results, Discussion and Conclusion

80

CHAPTER 9

Results and Discussion

9.1 Practical

The performance of the RRB-tree implementation and the different optimisations
were evaluated through repeated runs of the parallel grep implementation, and is
compared to the same implementation using mutable array lists. As all computing
parts have overhead unrelated to list operations, a third program only counting the
number of lines is used to compute an approximation for the overhead. To avoid
performance differences due to disk buffering or similar cache policies, 3 warmup
runs were performed, followed by 50 benchmarked runs. A single run consists of
running all 3 programs sequentially, hence program execution is interleaved.

As the different optimisations may yield different performance, five different optimi-
sation permutations were measured:

1. The naïve, original implementation, which uses no optimisations.

2. Direct appends, denoted (D).

3. Direct appends plus tail, denoted (DT).

4. Transients and direct appends, denoted (D!).

5. Transients, direct appends and tail, denoted (DT!).

The transient implementation must, as described in Chapter 7, use direct append,
which is why there is no transient test without direct appends. The tail implementa-
tion had to use the direct pop implementation in order to support pops. Although
technically possible, it was hard to decouple the direct pop and direct append imple-
mentation. Therefore, the permutation only using the tail automatically included the
direct append implementation, and gave equivalent results with the (DT) permuta-
tion.

All of the mentioned permutations were run with the 50 benchmarked runs interleaved
with the array list implementation and the overhead implementation. Additionally,
the branching factor effect was measured from b = 2 to b = 6, M = 2b, with all
optimisations (DT!) turned on.

81

9.2 Append Time 82

NAME TIME (NS) TIME - OH (NS) RELATIVE RELATIVE - OH

OVERHEAD 667089430.58 0.00 N/A N/A

ARRAY 814386692.12 147297261.54 1.000 1.000
RRB - DT! 825221786.44 158132355.86 1.013 1.074
RRB - ! 840680019.90 173590589.32 1.032 1.179
RRB - DT 977754573.14 310665142.56 1.201 2.109
RRB - D 1303835118.64 636745688.06 1.601 4.323
RRB - NAÏVE 2494461829.48 1827372398.90 3.063 12.41

Table 9.1: Line search times

The results presented is the median of all 50 runs. All measurements had a median
roughly equal to the mean and a very small interquartile range. The only exception is
the concatenation phase, which had a very large interquartile range further discussed
in Section 9.3.

All runs were run with same search terms on all the public activity on GitHub from
January 1. 2013 to January 10. 2013, fetched from http://www.githubarchive.
org/. This data is 2.4 GB large uncompressed, containing 1.5 million lines. Search
terms used is presented in Figure B.1.

For memory benchmarks, programs measuring total memory usage during the search
phase and concatenation phase were designed. As neither the array list nor the RRB-
tree utilise randomness, a single run per search term was sufficient to determine
memory usage.

The benchmarks were performed on a PC with a 4-threaded 2.0 GHz Intel Core
i7-3667U processor and 8 GB of memory, running 64 bit Debian Jessie (Linux 3.13).
The CPU has a 32 kB L1 cache, 256 kB shared L2 cache and a 4096 kB shared L3
cache. Programs were compiled with Clang, version 3.4.1 from the http://llvm.
org/apt/wheezy/ Debian repository. The pthread implementation used is NPTL
2.17, along with Boehm GC version 7.2. All code was compiled with the flag -Ofast,
and was ran at runlevel 1 to minimise thread scheduling and interfering programs.
All benchmarks use 4 threads.

9.2 Append Time

As append performance was the intended goal to improve, we expect that the running
time would be significantly decreased for the line search phase and the search filtering
phase. Figure 9.1 shows the total time used per optimisation, from lowest time to
highest. As all runs walks over the same file, there is no difference based upon the
query given to pgrep.

Unsurprisingly, all optimisations combined yields the best performance. However, the
total runtime compared to the array implementation is unexpectedly good: The array

http://www.githubarchive.org/
http://www.githubarchive.org/
http://llvm.org/apt/wheezy/
http://llvm.org/apt/wheezy/

9.2 Append Time 83

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Overhead Array RRB (DT!) RRB (!) RRB (DT) RRB (D) RRB (naive)

M
ill

is
ec

on
ds

Line search time

Figure 9.1: Time used in line search phase

implementation uses, on average, about 814.4 milliseconds (msec). A transient RRB-
tree with a tail and direct append uses around 825.2 msec. If we remove the overhead
which is on 667.1 msec, the RRB-tree version is roughly 7.3% slower. In contrast, the
unoptimised append version of the RRB-tree uses almost 2.5 seconds in this stage,
over 12 times slower than the array implementation. Table 9.1 shows all results,
where RELATIVE represents the relative time compared to the array implementation,
and RELATIVE - OH represents the relative time when overhead is removed.

From direct appending to tail usage, we see that the total time required decreases
from 1304 msec down to 977.8 msec. If we remove the overhead on 667.1 msec, we
get that the tail implementation over doubled the performance of appending in this
situation. This seems to fit with earlier measurements on the impact a tail has on the
persistent vector append performance, which had time used decreased by a factor
between 2 and 5 [9].

Informal benchmarks by Hickey indicates that transients can improve the perfor-
mance of persistent vector appending with a factor on almost 10 [10]. The relative
performance increase from an RRB-tree using direct appends and tails to its transient
version is not as good, almost doubling in this phase of the program.

It is not impossible that additional computations and extra checks on an RRB-tree
slows down its transient performance. However, it is more likely that the opposite is
true: That the -Ofast flag improves non-transient performance by a considerable
factor. As the measurements of transient vectors were done on the JVM, which has a
completely different runtime and memory layout, it is not unreasonable to assume
that in this specific situation, the JVM may perform worse. Finally, the overhead

9.2 Append Time 84

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ill

is
ec

on
ds

Lines matching (in millions)

Total search filter time

Overhead
RRB (naive)

RRB (D)
RRB (DT)
RRB (D!)

RRB (DT!)

Figure 9.2: Total time used in search filtering phase

implementation runs almost 150.0 msec faster than the array list. It may be that
the optimisation step on the overhead implementation performs better by taking
shortcuts not viable when the line intervals has to be stored. As a result, the relative
performance increases benchmarked may be higher than the actual performance
increases.

From the results from the line search phase, one might expect that the search filtering
phase has similar results. However, this phase – visually represented in Figure 9.2
– has a higher relative runtime than the line search phase, even more so when the
overhead is removed. The array list implementation benchmarks are not shown, as it
follows the overhead plot.

There are many factors which might contribute to this additional overhead. One of
the more important factors is the fact that the “overhead” calculation is an estimation
of the overhead. Recall that we must store the line intervals somewhere. As the storage
with the least overhead when performing read-only instructions is an array, it is used
to make an estimate of the overhead. As such, the array list implementation only
times the time to insert an element, and the infrequent reallocations. The relative
overhead is therefore not the best fit to measure the work being done not related to
the data structure.

While this could explain the rather low time on the array implementation, it does
not explain why the RRB-tree require more time. The relative time for the transient
RRB-tree with tail is here 8.6%, in stark contrast with the previous 1.3%.

The cause with the highest impact factor is likely the RRB-tree access pattern: While

9.2 Append Time 85

NAME TIME (NS) TIME - OH (NS) RELATIVE RELATIVE - OH

OVERHEAD 479452023.68 0.00 N/A N/A

ARRAY 480092793.46 640769.78 1.000 1.000
RRB - DT! 521358789.04 41906765.36 1.086 65.40
RRB - ! 532751545.20 53299521.52 1.110 83.18
RRB - DT 703297313.18 223845289.50 1.465 349.3
RRB - D 1100903284.24 621451260.56 2.293 969.9
RRB - NAÏVE 2381177126.80 1901725103.12 4.960 2968

Table 9.2: Search filter time for 1.5 million matches

the RRB-tree has good access times, it is relatively high compared to an array. Addi-
tionally, the trie is walked for every lookup, which is not ideal. Preferably, one should
use an iterator which uses the ideas of a stack/“display”, elaborated in Section 2.8
and further discussed in Section 6.3.

Another factor involved may be branch prediction: Notice that in Figure 9.2, from
around 0.2 to 0.5 million lines, the difference between the overhead and the transient
RRB-tree is almost negligible. If the only contributing factor was RRB-tree access,
one would expect the gap to be relatively constant. This is not the case, which might
imply that the string search function is able to be branch predicted in the array list
runs, but not within the RRB-tree runs due to its additional overhead.

Finally, the search filtering happens much later in the program. As a result, the
garbage collector is more likely to collect garbage within this period. The array list
and overhead implementation does not use any garbage collector, and as a result is
not impacted by this.

9.2.1 Branching Factor Effect

Figure 9.3 presents the results from different branching factors in the line search
phase, where all optimisations were enabled. Branching factors did not affect the
performance as significantly as the persistent vector branching comparison in Figure
2.7. This is to be expected, as transient data structures do not have to copy any internal
nodes in this specific situation. In addition (M − 1)/M of all append operations run
in actual constant time. In contrast, the persistent vector operations has to walk the
tree and copy internal nodes.

Nevertheless, Figure 2.7 and Figure 9.3 resemble each other, in that both match the
line f(x) = (ax− b)2 + c for different a,b, c. The branching factor M = 2b where
b = 5 seems to give the best performance. This may indicate that, for transients with
tails, the branching factor M = 25 gives a very good ratio between node size and
constant time appends. However, the results may vary between different environments,
most particularly when there are differences in memory allocation times.

9.3 Concatenation Time 86

0

50

100

150

200

b = 2 b = 3 b = 4 b = 5 b = 6

M
ill

is
ec

on
ds

Line search time without overhead

Figure 9.3: Branching factor effects on line search phase

Figure 9.4 shows the different branching factor performance for the search filtering
phase. As in the line search phase, b = 2 and b = 3 is noticeably slower than
branching factors b = 4, b = 5 and b = 6. Although the best branching factor varies
based upon the number of lines to append, the overall results indicate that higher
branching factor is better.

An RBB-tree has better access times with higher branching factors, as it has a lower
height. One may thus expect that the overhead related to access lookup will be lower
for those runs. An iterator may decrease this overhead, and could make the RRB-trees
with lower branching factor perform better.

Although the variation in these tests is small enough to suggests that b = 5 is the
currently optimal choice, the differences between b = 4 up to b = 6 is very small. It
may be possible that a different hardware setup or different environment could give
different results. However, both Clojure and Scala uses b = 5, which indicates that
this may be a good branching factor for the JVM as well.

9.3 Concatenation Time

While append times are the most important factor within this thesis, they should not
severely impact the performance of other functions. From a theoretical perspective,
neither slicing, accesses or updates should be impacted. In fact, if anything, they
should be faster, as the tree is likely to be more compact.

For concatenation, the answer is not immediately obvious. As all the vectors are built
up using direct appending on empty RRB-trees, they will be all be leftwise dense.

9.3 Concatenation Time 87

-20

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ill

is
ec

on
ds

Lines matching (in millions)

Search filter phase excluding overhead

b = 2
b = 3
b = 4
b = 5
b = 6

Figure 9.4: Branching factor effects on search filter phase

Therefore, the first concatenations will require no rebalancing: The lowest level will,
by default, require no concatenation. The second level contains two nodes, both
of which have length ‖Topt‖. Therefore, none of the nodes have to be rebalanced,
as their combined optimal size would at worst be their sizes minus one. This logic
follows up to the top node, which may grow if there is not enough space in the top
node. As a result, the first concatenations will be fairly cheap. However, the following
concatenations will entirely depend on the sizes of the previous vectors, and the
results may vary based on that.

Additionally, we may expect the concatenation time for tail implementations to
be somewhat higher than the non-tail implementations, simply because the tail
implementations have to do more work. The transient RRB-trees should not have con-
siderably different performance measures compared to their persistent counterparts:
The only difference would be where the trie nodes are laid out in memory.

Figure 9.5 shows us that the concatenation times does not change considerably.
Although not shown directly in the figure, the concatenation time for all points has a
very high variation: The difference between first to third quartile is very high, and
maximum and minimum runtimes were roughly equal for all runs. See Figure C.1 in
Appendix C for more information. Additionally, the same RRB-trees are concatenated
over and over, so concatenation times may not be representative for the general RRB-
tree concatenation of their total size. Finally, the runtime of a single concatenation is
very small: The overhead, which is assumed to be constant, changes, even though
the concatenation step is simply a parallel addition reduction. As a result, it is hard
to conclude with any trends between the different optimisations.

9.3 Concatenation Time 88

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ill

is
ec

on
ds

Lines matching (in millions)

RRB-tree concatenation time

Overhead
RRB (naive)

RRB (D)
RRB (DT)
RRB (D!)

RRB (DT!)

Figure 9.5: RRB-tree concatenation time

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ill

is
ec

on
ds

Lines matching (in millions)

Concatenation time

Overhead
Array

RRB (naive)
RRB (D)

RRB (DT)
RRB (D!)

RRB (DT!)

Figure 9.6: Concatenation time with array

9.3 Concatenation Time 89

However, it is evident that the runtime is relatively the same compared to the array
list implementation. Recall that the array list implementation uses linear time for
concatenation, backed up by Figure 9.6. At 1.5 million matches, the 5.5 milliseconds
copying is 21 times slower than the 0.26 millisecond concatenation for an RRB-tree.

The rather drastic increase in time used by the array list implementation near 800
000 elements is most likely related to the L3 cache not being able to store the whole
array.

9.3.1 Branching Factor Effect

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ill

is
ec

on
ds

Lines matching (in millions)

Concatenation time

Overhead
b = 2
b = 3
b = 4
b = 5
b = 6

Figure 9.7: Branching factor effects on concatenation

The branching factor over the transient RRB-tree utilising direct append and tails is
shown in Figure 9.7. As with the previous concatenation plots, the variance is not
low enough to conclude anything. However, the plotted lines have the same trend,
so future work could attempt to properly benchmark concatenation with different
inputs and different branching factors.

As clearly seen in the figure, there is a huge spike from 0.8 to 1.0 million elements.
The spike is also visible in Figure 9.5 as well, and is most likely there because of
memory allocations and potentially quick garbage collections: The heap size is not
explicitly set, and defaults to 65 536 bytes. After the line search and concatenation
phase, the GC has increased the heap size up to 27.4 MB. The next heap increase
happens if more than 0.45 million lines matches in the search filtering phase, in
which case the heap size increases to 35.8 MB. However, the next heap increase does

9.4 Overall Time 90

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ill

is
ec

on
ds

Lines matching (in millions)

Total runtime

Overhead
Array

RRB (naive)
RRB (D)

RRB (DT)
RRB (D!)

RRB (DT!)

Figure 9.8: Total running time for pgrep, excluding I/O

not happen before just over 1 million lines matches (up to 44.2 MB). Therefore, the
memory allocator either has to use more time to find a free memory block, or has
to reclaim one. This is faster when there is more free space available on the heap,
and could explain the additional work being done at these levels. As there is a spike
at 1.5 million matching lines, one would expect the same happens there as well. As
the heap still remains at 44.2 MB in size at 1.5 million matches, this seems like a
reasonable cause.

9.4 Overall Time

The overall runtime, which is the aggregation of all the different phases excluding
I/O, is presented in Figure 9.8. As the line and search filtering phases dominates
considerably compared to the concatenation stage, it is to be expected that the
running times from those program stages defines how much faster or slower an
implementation is.

Considering the performance of the line search and search filtering stage has already
been discussed, there is no need to discuss the graph itself as we would reiterate
the points from those parts. A perhaps more interesting question is whether we can
consider the RRB-tree a data structure with effectively constant time append. Figure
9.8 shows a graph where the running time for transient RRB-trees does not seem to
increase with more matches. Data from Table 9.1 also supports this claim, where the
speed of transients is comparable to dynamic arrays, which has an append operation
running in amortised constant time with a very low constant factor.

9.4 Overall Time 91

NAME TIME (NS) TIME - OH (NS) RELATIVE RELATIVE - OH

OVERHEAD 1146721687.44 0.00 N/A N/A

ARRAY 1303207989.18 156486301.74 1.000 1.000
RRB - DT! 1347461353.48 200739666.04 1.034 1.283
RRB - ! 1375463781.68 228742094.24 1.055 1.462
RRB - DT 1681408978.70 534687291.26 1.290 3.417
RRB - D 2404692476.12 1257970788.68 1.845 8.039
RRB - NAÏVE 4860573069.44 3713851382.00 3.730 23.73

Table 9.3: Total runtime for 1.5 million matches

160

180

200

220

240

260

280

300

320

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ill

is
ec

on
ds

Lines matching (in millions)

Total runtime excluding overhead

b = 2
b = 3
b = 4
b = 5
b = 6

Figure 9.9: Branching factor effects on total runtime

However, calling the append times on a persistent RRB-tree for effectively constant
with this environment seems unreasonable: The eagle-eyed reader will notice an
increasing gap in Figure 9.8 between the persistent RRB-tree utilising direct appends
and tail, and the transient version. Most likely, this is caused by slow memory alloca-
tion and, to some extent, copying. Other environments, such as the JVM, may have
more efficient memory allocation semantics, and as a result may have performance
characteristics which seems more like constant time.

9.4.1 Branching Factor Effect

Figure 9.9 presents the branching factor impact on the total runtime, excluding
overhead. As seen, b = 5 gives best overall performance. However, as previously
noted, the difference between b = 4, b = 5 and b = 6 is small.

9.5 Memory Usage 92

As discussed in Section 9.2.1, the branching factor impacts the height of the RRB-tree
containing the line intervals, and thus the iteration over it. An iterator using a display
will probably increase the gap between b = 5 and b = 6 further. However, as new
hardware will come out, it is also likely that b = 6 will be the most performant in
the not too distant future.

9.5 Memory Usage

Memory was measured in two different situations: The total memory usage by the P
data structures immediately after the search filtering phase, and memory required for
the last concatenation in the concatenation phase. For the RRB-tree, the extra memory
required for the concatenations of larger tries is insignificant, and is in practise the
sum of the P data structures. Therefore, the memory usage for RRB-trees is only
shown as the memory required for the last concatenation. Figure 9.10 presents the
total used memory.

As array lists doubles their capacity every time they are full and attempts to append
an element, they may use considerably more memory than required: A jump in the
graph indicates a large array list doubling its capacity. The concatenation step for
an array list could require twice as much memory as a data structure without any
overhead, depending on the capacity of the left list. If the left list has capacity enough
to copy the right list into itself, the total memory required would be the size of the
left list plus the size of the right. However, if there is not enough space in the left list,
the contents of the left has to be reallocated into a contiguous block where there is
enough space to store both. This may require copying the left list into another block,
which requires the old lists and the new one to reside in memory at once.

For 4 threads and sufficiently large lists, the most expensive concatenation would be
the last one. The capacity of the lists to be concatenated is likely the length of them,
as they are results of previous concatenations. Consequently, the most expensive
concatenation would require the sum of the lists sizes multiplied by two.

For an RRB-Tree concatenation, all three trees has to reside within memory at some
point. Therefore, total memory needed for an RRB-Tree concatenation is the memory
needed for both trees to be concatenated plus the result. However, as RRB-Trees
utilise structural sharing, the overhead is small compared to the array list.

Although hard to see, the transient versions use more memory than the non-transient
versions. This happens as the transients require the additional ID field in all nodes.
Direct append seems to reduce total memory usage, most likely as it guarantees that
the non-concatenated trees are leftwise dense. This results in no use of size tables
and ensures minimal height.

Figure 9.11 presents the overhead ratio. As expected, the array implementation uses
half of the total memory used on overhead during concatenation. On average, one
would expect a single array list to have an overhead ratio of 0.25: At worst, the

9.5 Memory Usage 93

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
B

(1
00

02
by

te
s)

Lines matching (in millions)

Total memory usage

No overhead
Array

Array (concat)
RRB (naive)

RRB (D)
RRB (DT)
RRB (D!)

RRB (DT!)

Figure 9.10: Total memory usage for different optimisation permutations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 102 103 104 105 106 107

Lines matching (in millions)

Overhead ratio

Array
Array (concat)

RRB (naive)
RRB (D)

RRB (DT)
RRB (D!)

RRB (DT!)

Figure 9.11: Memory overhead ratio for different optimisation permutations.

9.5 Memory Usage 94

overhead would take 0.5 of all memory, and at best, it would require near 0.0. In
these runs, if we exclude searches with less than 10 000 matches, the mean is near
0.3. Although this is higher than predicted, it is likely to be coincidental.

For the RRB-tree, we see that implementations using a tail and transient has notably
higher overhead for smaller trees. This is to be expected, as both tail and transience
adds additional fields to the RRB-tree head. The tail field should be considered
negligible for larger trees, which can be seen in Figure 9.11.

It is not unreasonable to assume that Corollary 2.8 holds for RRB-trees generated
by direct appending. Additionally, if few concatenations have been performed, the
potential size tables added in should be considered negligible compared to the total
memory used.

For the implementations not using transience, the overhead for each node is the node
type (4 bytes1), the length field (4 bytes) and the size table pointer field (8 bytes):

o = 4 + 4 + 8 = 16

‖τ‖ = 8, p = 8 and M = 32. From Corollary 2.8, we then get that the the overhead
ratio should be approximately 3/34 = 0.088. However, for all results over 10 000,
the overhead ratio for non-transient direct append RRB-trees is on average 0.062.
This is likely because the leaf nodes do not contain a size table pointer. Since we know
that there are at least Mh(R) leaf nodes, and at most (Mh(R) − 1)/(M − 1) internal
nodes (by Theorem 2.6), we know that there will be approximately M − 1 leaf nodes
per internal node. As such, for a better approximation, the size table pointer should
be divided by M. The approximated overhead ratio when doing so is 0.0615, much
closer to the actual overhead.

For transients, we have an additional 8 bytes for the ID field for each node, including
leaf nodes. Corollary 2.8 gives us an approximation of about 0.089, very close to the
actual mean overhead of 0.08964.

The naïve RRB-tree variant has a mean overhead ratio of 0.081, roughly 0.02 more
than what Corollary 2.8 approximates. Assuming all internal nodes has a size table,
we must use 4 bytes to store each pointer’s size slot. Incrementing p by 4 gives us
0.0755, considerably less than what we actually have. It is of course not surprising
that Corollary 2.8 does not give a good approximation on heavily concatenated
RRB-trees, but it is good to verify nonetheless. Corollary 2.8 should therefore only be
used to give a lower bound on the approximate overhead ratio of an RRB-tree.

If memory is a concern, it is possible to reduce the memory footprint for array lists
in the search filtering phase by reducing the growth rate. In fact, the ArrayList
implementation in OpenJDK uses a growth factor of 1.5[29], instead of the doubling
used in this array list implementation. This should decrease the overhead ratio from

1Strictly speaking, we could require only 1 byte of memory for the node type. However, fields
should be aligned to increase memory performance, and this adds in 3 bytes.

9.5 Memory Usage 95

b TOTAL MEMORY OH OH RATIO APP. OH RATIO

b = 2 25321048 13167992 0.5200 0.5200
b = 3 17580624 5427568 0.3087 0.3086
b = 4 14636872 2483816 0.1697 0.1696
b = 5 13344856 1191800 0.0893 0.0891
b = 6 12739416 586360 0.0460 0.0457

Table 9.4: Branching factors and memory usage, for n = 1519132.

the search step phase by, on average, about half. Furthermore, it is usually possible
to calculate the maximal possible size an array list will be. For instance, performing a
filtering operation on a list of length N will at most result in a list of length N. However,
reducing the growth will not help with the memory usage in the concatenation phase,
which is considerably higher.

9.5.1 Branching Factor Effect

One would expect that the approximation previously derived should work regardless
of branching factor. Additionally, we would expect to see a curve not too different
from Figure 2.6, but with different ratios: The difference between b = k − 1 and
b = k should be roughly the double the difference between b = k and b = k+ 1. As
seen in Figure 9.12, this seems to match well.

Table 9.4 shows the memory used along with approximated and actual overhead
ratios, where Corollary 2.8 is used as approximation algorithm, with the following
values:

o = 4 + 4 + 8 +
8
2b

p = 8

M = 2b

‖τ‖ = 8

This seems to fit very well with the actual overhead ratios.

The results in Figure 9.13 shows us that for b = 2, the overhead is actually more than
half of the total memory used. Additionally, for b = 3, the memory used seems to fit
well with the average memory usage for an array list. In general, then, it seems safe
to say that the persistent vector and the RRB-tree will use considerably less memory
overhead compared to an array list, specifically during concatenations.

9.5 Memory Usage 96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 102 103 104 105 106 107

O
ve

rh
ea

d
ra

ti
o

Lines matching

Overhead ratio

Array
Array (concat)

b = 2
b = 3
b = 4
b = 5
b = 6

Figure 9.12: Memory overhead ratio for different branching factors.

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
B

(1
00

02
by

te
s)

Lines matching (in millions)

Total memory usage

Array
Array (concat)

b = 2
b = 3
b = 4
b = 5
b = 6

Figure 9.13: Total memory usage for different branching factors.

CHAPTER 10

Conclusion

This thesis has formally analysed the persistent vector and an extension of it, the RRB-
tree. Optimisations related to RRB-tree appending has been proposed and formally
explained. Measurements reveal that the optimised RRB-tree yields considerably
better performance compared to an RRB-tree without these optimisations. The results
also suggest that the performance may be comparative to mutable array lists in certain
situations.

While the persistent vector claims to have effectively constant time appends, this can
not be verified for the persistent RRB-tree in these benchmarks: Although very close
to constant time, its append performance decreases somewhat with increasing size.
However, this may be due to slow memory allocations by the garbage collector chosen,
and the performance may very well be effectively constant time in other environments.
Additionally, the benchmarks indicate that transient RRB-trees performs appends in
effectively constant time.

The RRB-tree library librrb has been implemented in C. The library provides an
RRB-tree implementation which can be used in programming languages able to use
C libraries, or as a reference implementation for implementations in other languages.
It is possible to modify both the branching factor and which optimisations to include
during compile time.

10.1 Future Work

The RRB-tree is a rather young data structure, and much work has yet to be done
on it. As mentioned in Section 6.3, a display and focus for an RRB-tree has not
been implemented, nor has efficient iteration. The concatenation algorithm could be
further analysed and potentially improved. Efficient and small rebalancing algorithms
for the slice operation could be implemented to reduce the problem with potentially
nondecreasing tree heights.

Memory allocation is most likely to be one of the bigger bottlenecks in the RRB-tree
algorithms. Efficient memory allocation by garbage collectors is therefore essential
to get an efficient RRB-tree. As we have only used the Boehm garbage collector, the

97

10.1 Future Work 98

performance of other garbage collectors may be measured. Finding good options for
garbage collectors tied to a programming language would also be valuable.

In this thesis, we have used static chunking as work distribution schedule. This
scheduling algorithm requires considerably fewer concatenations compared to adap-
tive work stealing, exponential splitting and recursive splitting. For lists where the
workload will be nonuniform with static chunking, and the size of the output list is
not known in advance, the RRB-tree may perform even better than in the benchmarks
performed in this thesis. Future work could look into the performance benefits of
using RRB-trees with these scheduling algorithms.

The C library implemented, librrb, loop unrolls the update and index algorithms.
However, the impact of loop unrolling has not been properly measured. In addition,
all other algorithms walking the trie may in theory be loop unrolled. Measuring
the performance benefits by loop unrolling different functions could help to further
increase the RRB-tree performance.

Finally, a more formal definition of transience would help the development of a stati-
cally typed language where transient usage may be analysed and ensure correct usage
at compile time. Furthermore, the definition could possibly be used in optimisation
passes to increase performance in already existing functional languages, such as
Haskell and OCaml.

Part IV

Appendices

99

APPENDIX A

Additional Functions

This appendix contains additional functions that are not essential to understand the
algorithms themselves, but may ease development of an actual implementation.

A.1 Concatenation Functions

1 function CONCAT-SUB-TRIE(L, R, top)
2 if h(L) > h(R) then
3 C← CONCAT-SUB-TRIE(L‖L‖−1, R, false)
4 return REBALANCE(L, C, NIL, false)
5 else if h(L) < h(R) then
6 C← CONCAT-SUB-TRIE(L, R0, false)
7 return REBALANCE(NIL, C, R, false)
8 else if h(L) = h(R) then
9 if h(L) = 0 then
10 T ← CREATE-INTERNAL-NODE()
11 if top and |L|+ |R| 6 M then
12 T0 ← EXPAND(〈L, R〉) . Merges L and R to a single leaf node
13 else
14 T0 ← L
15 T1 ← R
16 end if
17 return T
18 else . Two internal nodes with same height
19 C← CONCAT-SUB-TRIE(L‖L‖−1, R0, false)
20 return REBALANCE(L, C, R, false)
21 end if
22 end if
23 end function

Listing A.1: CONCAT-SUB-TRIE.

The concatenation algorithm consists of an three additional helper functions: CONCAT-
SUB-TRIE, which is the internal main function, REBALANCE, which performs a rebal-

100

A.1 Concatenation Functions 101

ancing if needed, and EXECUTE-CONCAT-PLAN, which takes in a node and returns a
new, rebalanced node based upon a concatenation plan.

We will start by describing CONCAT-SUB-TRIE: It takes in three values, L, R and top. If
top is set to true, we concatenate the top nodes of two tries. Otherwise, at least one
of the nodes has a parent.

Now, if the nodes have different height, we must even the difference: Only nodes of
same height can be concatenated. This happens in line 2 to 7. If L, the left node is
the highest, recursively call CONCAT-SUB-TRIE with its rightmost child and R. If R, the
right node is the highest, we do the same, but with its leftmost child.

1 function REBALANCE(L, C, R, top)
2 T ← CONCAT-NODE-MERGE(L, C, R)
3 c,n← CREATE-CONCAT-PLAN(T)
4 T ← EXECUTE-CONCAT-PLAN(T, c, n)
5 if n 6 M then
6 if top = false then
7 return 〈T〉 . Internal node with T as child
8 else
9 return T
10 end if
11 else
12 L′ ←INTERNAL-NODE-COPY(T, 0, M)
13 R′ ←INTERNAL-NODE-COPY(T, M, n− M)
14 return 〈L′, R′〉
15 end if
16 end function

Listing A.2: Rebalancing algorithm for RRB-CONCAT.

As CONCAT-SUB-TRIE returns a node C, the “centre” node. We must merge, and po-
tentially rebalance C betweeen L and R: This is done by calling REBALANCE. The
rightmost child in L and the leftmost child in R are not included in the merge, and is
handled by the function CONCAT-NODE-MERGE. CONCAT-NODE-MERGE may return a
node T with more than M slots.

CREATE-CONCAT-PLAN, presented in Section 3.4.2, takes the large node T and checks
whether it satisfies the search step relaxed invariant: If

‖T‖ 6 ‖Topt‖+ emax

then nothing is done, otherwise a new node distribution plan is created. T is then
passed to the EXECUTE-CONCAT-PLAN, and if the nodes has to be rebalanced, it is done
there.

If top is false, it means this result is passed back up to a recursive CONCAT-SUB-TRIE

call, and will be rebalanced again with two nodes with higher height. If the total

A.2 Direct Append Helper Functions 102

amount of children are more than M, we have to split the node into two nodes
regardless, so we cut them up to two nodes and put them in a new internal node
with two children. If the total amount of children is less than or equal to M, then this
node is a legal node. Recall that the top node can not contain a single child unless it
is a leaf node, so if we are at the top, we do not put the node into an internal node
unless it is going to be rebalanced at the next level.

A.2 Direct Append Helper Functions
The direct append algorithm uses three additional functions: COPYABLE-COUNT, COPY-
FIRST-K and APPEND-EMPTY. We begin with the most complex one, COPYABLE-COUNT.

1 function COPYABLE-COUNT(R)
2 nc ← 0 . Nodes to copy
3 nv ← 0 . Nodes visited so far
4 pos← 0 . Position to place in node after copy
5 T ← Rroot
6 for h← h(R) downto 0 do
7 i′ ← ‖T‖− 1
8 T ← Ti′
9 nv ← nv + 1
10 if i′ < M − 1 then
11 nc ← nv
12 pos← i′

13 end if
14 end for
15 return nc,pos
16 end function

Listing A.3: Implementation of COPYABLE-COUNT.

COPYABLE-COUNT returns the amount of nodes we can copy until we must create new
nodes, along with the position pos where we insert new nodes in the last copied
node.

How do we know that we can copy this node safely? There are two criterias we can
satisfy: Either there is enough space for more children in this node, or there is space
to insert the value in this node’s rightmost child. Since we will walk the whole trie,
we only have to know that there is at least space in this node to know that its parents
are copyable. Consequently, we only check that the node we are at is copyable, and if
it is, we know that its parents are.

As we always know we will walk the rightmost node, there is no reason to perform a
relaxed radix search, neither in COPYABLE-COUNT nor in COPY-FIRST-K.

COPY-FIRST-K walks the rightmost nodes in the trie and performs a standard path copy.
In addition, it copies and increments the size table of all nodes if they have a size
table. Finally, it returns the last copied node.

A.2 Direct Append Helper Functions 103

1 function COPY-FIRST-K(R, R′, k)
2 Torig ← Rroot
3 R′root ← CLONE(Torig)
4 T ← R′root
5 for h← h(R) downto 1 do
6 i′ ← ‖T‖− 1
7 Ti′ ← CLONE(Torig[i′])
8 INCREMENT-SIZE-TABLE*(Ti′) . Increment last size table slot if it exists
9 T ← Ti′
10 Torig ← Torig[i′]
11 end for
12 return T . Return last copied node
13 end function

Listing A.4: Implementation of COPY-FIRST-K.

As COPY-FIRST-K will always copy at least one node (the main direct append function
will increase the height if not), the last copied node by COPY-FIRST-K is passed to
APPEND-EMPTY. If there are no nodes to copy, APPEND-EMPTY simply short circuits
and returns the value passed in. Otherwise, it creates a leaf node and hempty − 1
internal nodes bottom up. Finally, the last internal node created is inserted at slot
pos in T the node passed in, and the leaf node is returned.

1 function APPEND-EMPTY(T, pos, hempty)
2 if 0 < hempty then
3 Nleaf ← CREATE-LEAF-NODE() . Last node must be leaf
4 N ← N′

5 for i′ ← 1 to hempty − 1 do
6 N′ ← CREATE-INTERNAL-NODE()
7 N′0 ← N
8 N ← N′

9 end for
10 Tpos ← N
11 return Nleaf . Return leaf node
12 else
13 return T . If no nodes needs to be appended, root is leaf
14 end if
15 end function

Listing A.5: Implementation of APPEND-EMPTY.

A.3 Direct Pop 104

A.3 Direct Pop

Direct pop is described in detail in Section 5.3: As described, the idea is to use an
internal stack to avoid recursive functions to speed things up. The stack is heavily
used, and as seen, there are no recursive function calls done.

1 function RRB-POP(R)
2 R′ ← CLONE(R)
3 |R′|← |R|− 1
4 W ←ARRAY-ON-STACK(hmax) . All slots initially NIL

5 W0 ← Rroot
6 for i← 1 to h(R) do
7 Wi ← Wi−1[‖Wi−1‖− 1]
8 end for
9 if

∥∥Wh(R)

∥∥ = 1 then . Leaf node contains only single element
10 Wh(R) ← NIL

11 else
12 Wh(R) ← CLONE(Wh(R))
13 Wh(R)[

∥∥Wh(R)

∥∥− 1]← NIL . Remove last element
14 end if
15 for i← h(R) − 1 downto 0 do
16 if ‖Wi‖ = 1 and Wi+1 = NIL then
17 Wi ← NIL

18 else
19 Wi ←CLONE(Wi)
20 Wi[‖Wi‖− 1]← Wi+1

21 DECREMENT-SIZE-TABLE*(Wi)
22 . Copy and decrement last slot in size table if it exists
23 end if
24 end for
25 if h(R) > 0 and ‖W0‖ = 1 then
26 R′root ← W1 . Height decrease
27 else
28 R′root ← W0

29 end if
30 return R′

31 end function

Listing A.6: RRB-POP using direct popping

APPENDIX B

Search Terms

SEARCH TERM LINE COUNT PERCENTAGE

whoopsie 4 0.000 %
250000 33 0.002 %
200000 49 0.003 %
ninety 104 0.007 %

seriously 161 0.010 %
branching 334 0.021 %

rrb 730 0.047 %
wow 1693 0.108 %

coffee 3579 0.229 %
Delete 14071 0.899 %
error 24746 1.581 %
edit 43712 2.792 %

branches 58513 3.738 %
merge 64292 4.107 %
fix 99908 6.383 %

Create 201848 12.895 %
JavaScript 297499 19.005 %

6a 378365 24.171 %
Java 468280 29.916 %
51 592902 37.877 %
21 700723 44.765 %
14 770307 49.210 %
09 878046 56.093 %
10 975886 62.343 %
07 1082471 69.153 %
12 1208500 77.204 %

issues 1519132 97.048 %
(empty string) 1565338 100.000 %

Table B.1: List of search terms

Table B.1 contains the list of search terms used for the benchmarks described in
Chapter 9.

105

APPENDIX C

Additional Plots

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ic

ro
se

co
nd

s

Lines matching (in millions)

Box-and-whisker plot of concatenation time

Overhead
RRB (naive)

RRB (DT)
RRB (DT!)

Figure C.1: Box-and-whisker plot for concatenation phase.

The box-and-whisker plot of the concatenation phase is presented in Figure C.1. To
make the graph readable, the position of the box-and-whisker plots are offset so
that they do not overlap. The direct append and transient direct append were not
included, as they had the same pattern and would take up too much space. The
y-axis was capped at 700 microseconds; the top whiskerbars from the naïve RRB-tree
measurements peaked at 2500 microseconds and would render the figure unreadable
if included.

As clearly seen, the variation, even for the overhead plot, is notable. As claimed in
Section 9.3, this means any trends based upon the median, shown in that section,
can not be considered statistically significant. Note that almost all runtimes were
between 100 and 400 microseconds.

106

APPENDIX D

librrb Installation and Use

D.1 Setup

Listing D.1 includes all necessary actions to configure a Debian or Ubuntu-based
system. It has been proven to work on Debian Jessie in May 2014. The setup consist
of 3 steps: Installation of necessary programs and libraries, building the library and
the benchmark programs, and running the benchmarks and visualise the result.

Line 1-8 installs the bare minimum of dependencies and libraries the RRB-Tree
project depends on. libgc1c2 is the specific Debian version of Boehm GC used for
benchmarking, although other versions are likely compatible.

Line 10-18 describes how to install the nightly build of the C compiler Clang. This step
is optional to get the library running, but omitting this step would affect benchmark
performance.

Line 20-34 builds and optionally installs the program. The ./run-tests.sh com-
mand checks whether the test suite runs fine, with a set of different optimisation
permutations. For information on configuration options, see D.2.

Finally, line 36-41 downloads the used input data and runs the benchmarks. Note
that the input data is in total 440 MB of zipped download data, and may take some
time to download. Additionally, the input data generation will require up to 5 GB
space during the build phase. When the file has been created, it will require 2.5 GB
of space.

D.2 Options

When running the command ./configure, different options are available to change
which optimisations are set, along with other usable values. When the default value
of a --disable-* is set to enabled, it means that the the functionality is enabled,
not that the command itself is. All options are shown in Table D.1.

107

D.3 Interface 108

1 # To get build autotools up and running
2 sudo apt-get install build-essential automake autoconf gnu-standards\
3 autoconf-doc libtool gettext autoconf-archive
4 # To install Boehm GC and development dependencies
5 sudo apt-get install libgc-dev libgc1c2
6 # Ensure that Boehm GC (libgc1c2) is 7.2 or higher by checking
7 # its version number
8 apt-cache show libgc1c2
9

10 ## Optional steps: For installing clang
11 sudo echo "# LLVM
12 deb http://llvm.org/apt/wheezy/ llvm-toolchain-wheezy main
13 deb-src http://llvm.org/apt/wheezy/ llvm-toolchain-wheezy main" \
14 >> /etc/apt/sources.list
15

16 wget -O - http://llvm.org/apt/llvm-snapshot.gpg.key | sudo apt-key add -
17 sudo apt-get install clang-3.4
18 ## Optional steps ending
19

20 cd path/to/rrb
21 autoreconf --install
22

23 ## If running Clang
24 CFLAGS="-Ofast -g" CC="clang" ./configure
25 ## If running gcc (NB: CC must be set if clang is available)
26 CFLAGS="-Ofast -g" CC="gcc" ./configure
27 ## See ’Options’ section for configure flags
28

29 ## For building and checking the consistency against the test suite
30 ./run-tests.sh
31

32 ## Optional: Install on the system
33 sudo make install
34 ## Uninstall by doing ‘sudo make uninstall‘ in this directory
35

36 # Running and creating benchmarks
37 cd benchmark-suite
38 ./make-data.sh
39 cd ..
40

41 ./run-bench.sh

Listing D.1: Shell commands for system setup.

D.3 Interface

This section serves as an overview for all library functions provided by the librrb
library. The functions are prototyped inside rrb.h and defined within rrb.c.

If a function is said to run in effectively constant time, one can assume the function
runs in O (log32 n) time, or the branching factor as specified when the library was

D.3 Interface 109

FLAG EXPLANATION DEFAULT VALUE

--disable-tail Disables tail Enabled
--with-branching=b Set b, such that M = 2b b = 5, M = 25

--disable-transients Disables transients Enabled
--disable-transients

-check-thread
Disables transient thread checking Enabled

--disable-direct
-append

Disables direct append Enabled

--disable-debug Disables debugging functions Enabled

Table D.1: List of configurable options

configured.

D.3.1 RRB-tree Functions

All RRB-tree functions described here do not modify the RRB-tree in any way, shape
or form. Passing in any value will never modify the tree.

const RRB* rrb_create(void)
Returns, in constant time, an immutable, empty RRB-Tree.

uint32_t rrb_count(const RRB *rrb)
Returns, in constant time, the number of items in this RRB-Tree.

void* rrb_nth(const RRB *rrb, uint32_t index)
Returns, in effectively constant time, the item at index index.

const RRB* rrb_pop(const RRB *rrb)
Returns, in effectively constant time, a new RRB-Tree without the last item.

void* rrb_peek(const RRB *rrb)
Returns, in constant time1, the last item in this RRB-Tree.

const RRB* rrb_push(const RRB *rrb, const void *elt)
Returns, in effectively constant time2, a new RRB-Tree with elt appended to the

end of the original RRB-Tree.

const RRB* rrb_update(const RRB *rrb, uint32_t index,
const void *elt)

Returns, in effectively constant time, a new RRB-Tree where the item at index index
is replaced by elt.

1Or effectively constant time, if the tail optimisation is not applied.
2When all optimisation are applied.

D.3 Interface 110

const RRB* rrb_concat(const RRB *left, const RRB *right)
Returns, in O (logn) time, the concatenation of left and right as a new RRB-Tree.

const RRB* rrb_slice(const RRB *rrb, uint32_t from, uint32_t to)
Returns, in effectively constant time, a new RRB-Tree which only contain the items

from index from to index to in the original RRB-Tree.

D.3.2 Transient Functions

Transient functions are only available when the --disable-transients is not
passed to ./configure. When enabled, the type TransientRRB is available, and
acts as defined in Chapter 4. In the worst case, transient functions provide same per-
formance as their counterpart. Repeated use will in most cases increase performance.

The transients will by default check that the thread they are created in is where the
functions are called. This feature can be turned off by passing the flag
--disable-transients-check-thread to ./configure.

TransientRRB* rrb_to_transient(const RRB *rrb)
Converts, in constant time, a persistent RRB-tree to its transient counterpart. The

persistent RRB-tree can still be used.

const RRB* transient_to_rrb(TransientRRB *trrb);
Converts, in constant time, a transient RRB-tree to a persistent RRB-tree. The

transient RRB-tree is invalidated.

uint32_t transient_rrb_count(const TransientRRB *trrb)
Returns, in constant time, the number of elements in this transient RRB-tree.

void* transient_rrb_nth(const TransientRRB *trrb, uint32_t index)
Returns, in effectively constant time, the item at index index.

TransientRRB* transient_rrb_pop(TransientRRB *trrb)
Returns, in effectively constant time, a new transient RRB-tree without the last

item. The original transient RRB-tree is invalidated.

void* transient_rrb_peek(const TransientRRB *trrb);
Returns, in constant time3, the last element in this RRB-tree.

TransientRRB* transient_rrb_push(TransientRRB *restrict trrb,
const void *restrict elt)

Returns, in effectively constant time4, a new transient RRB-Tree with elt appended
to the end of the original transient RRB-Tree. The original transient RRB-tree is
invalidated.

3Or effectively constant time, if the tail optimisation is not applied.
4If all optimisations are applied.

D.3 Interface 111

TransientRRB* transient_rrb_update(TransientRRB *restrict trrb,
uint32_t index, const void *restrict elt)

Returns, in effectively constant time, a new transient RRB-Tree where the item at
index index is replaced by elt. The original transient RRB-tree is invalidated.

TransientRRB* transient_rrb_slice(TransientRRB *trrb,
uint32_t from, uint32_t to)

Returns, in effectively constant time, a new transient RRB-tree which only contain
the items from index from to index to in the original RRB-Tree. The original transient
RRB-tree is invalidated.

D.3.3 Debugging Functions

Debugging functions have no performance guarantees, and may be slow. A dot file
may be converted to a graph through the Graphviz tool dot. For instance would
“dot -Tpng -o output.png input.dot” convert the dot file input.dot to the
png file output.png.

Although the debugging functions are intented to be used for persistent RRB-trees,
they work completely fine on transient RRB-trees as well. Casting the transient to a
persistent RRB-tree by doing (const RRB*) should be sufficient to avoid warnings.

void rrb_to_dot_file(const RRB *rrb, char *fname)
Writes a new file with the filename fname with a dot representation of the RRB-Tree

provided. If the file already exists, the original content is overridden.

DotFile dot_file_create(char *fname)
Creates and opens a DotFile. Note that a DotFile is passed by value, not by pointer.

DotFile dot_file_close(DotFile dot)
Writes and closes a DotFile to disk. Any call performed after the DotFile is closed is

considered an error.

void rrb_to_dot(DotFile dot, const RRB *rrb)
Writes the RRB-Tree to the dot file, if not already written. Shared structure between

RRB-Trees is visualised, with the exception of NULL pointers.

void label_pointer(DotFile dot, const void *node, const char *name)
Labels a pointer (Usually an RRB-Tree pointer) in the dot file. It is legal with multiple

labels on a single pointer. If the pointer is NULL, the label will be attached to the
latest NULL pointer added to the dot file. Labelling pointers not contained in the dot
file is not an error, but will generate strange visualisations.

uint32_t rrb_memory_usage(const RRB *const *rrbs,
uint32_t rrb_count)

Calculates the expected memory used by rrb_count RRB-Trees, and takes into
account structural sharing between them.

Bibliography

[1] N. Shavit and D. Touitou. “Software Transactional Memory”. In: Distributed
Computing 10.2 (1997), pp. 99–116.

[2] D. Lea. “A Java Fork/Join Framework”. In: Proceedings of the ACM 2000 Con-
ference on Java Grande. JAVA ’00. San Francisco, California, USA: ACM, 2000,
pp. 36–43.

[3] P. Bagwell and T. Rompf. RRB-Trees: Efficient Immutable Vectors. Tech. rep.
EPFL, 2011.

[4] R. Hickey. The Clojure programming language. 2006. URL: http://clojure.
org (visited on Dec. 16, 2013).

[5] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. “Making Data Struc-
tures Persistent”. In: Proceedings of the Eighteenth Annual ACM Symposium
on Theory of Computing. STOC ’86. Berkeley, California, USA: ACM, 1986,
pp. 109–121. ISBN: 0-89791-193-8. DOI: 10.1145/12130.12142. URL:
http://doi.acm.org/10.1145/12130.12142.

[6] C. Okasaki. “Purely Functional Random-access Lists”. In: Proceedings of the
Seventh International Conference on Functional Programming Languages and
Computer Architecture. FPCA ’95. La Jolla, California, USA: ACM, 1995, pp. 86–
95. ISBN: 0-89791-719-7. DOI: 10.1145/224164.224187. URL: http://
doi.acm.org/10.1145/224164.224187.

[7] P. Bagwell. Fast Functional Lists, Hash-Lists, Deques and Variable Length Arrays.
Tech. rep. 2002.

[8] P. Bagwell. Ideal Hash Trees. Tech. rep. EPFL, Oct. 2001.

[9] R. Hickey. Re: 20 Days of Clojure - Day 7: PersistentVector. [online]. In: Clojure
Mailing List. Mar. 9, 2008. URL: https://groups.google.com/d/msg/
clojure/UtEclYla9N8/8-VzDZUWlPsJ (visited on May 27, 2014).

[10] R. Hickey. Transient Data Structures. [online]. In: Clojure Mailing List. Aug. 3,
2009. URL: https://groups.google.com/d/msg/clojure/zdYsxH1K0B0/
OGm5YSGKNZcJ (visited on May 27, 2014).

[11] D. Knuth. The Art of Computer Programming: Sorting and Searching v. 3. Read-
ing, Mass: Addison-Wesley Pub. Co, 1998. ISBN: 0-201-89685-0.

112

http://clojure.org
http://clojure.org
http://dx.doi.org/10.1145/12130.12142
http://doi.acm.org/10.1145/12130.12142
http://dx.doi.org/10.1145/224164.224187
http://doi.acm.org/10.1145/224164.224187
http://doi.acm.org/10.1145/224164.224187
https://groups.google.com/d/msg/clojure/UtEclYla9N8/8-VzDZUWlPsJ
https://groups.google.com/d/msg/clojure/UtEclYla9N8/8-VzDZUWlPsJ
https://groups.google.com/d/msg/clojure/zdYsxH1K0B0/OGm5YSGKNZcJ
https://groups.google.com/d/msg/clojure/zdYsxH1K0B0/OGm5YSGKNZcJ

BIBLIOGRAPHY 113

[12] C. Okasaki and A. Gill. “Fast Mergeable Integer Maps”. In: In Workshop on ML.
1998, pp. 77–86.

[13] Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference
Manual. 248966-018. Mar. 2009.

[14] N. Sarnak and R. E. Tarjan. “Planar Point Location Using Persistent Search
Trees”. In: Commun. ACM 29.7 (July 1986), pp. 669–679. ISSN: 0001-0782. DOI:
10.1145/6138.6151. URL: http://doi.acm.org/10.1145/6138.6151.

[15] A. Agarwal, J. Hennessy, and M. Horowitz. “An Analytical Cache Model”. In:
ACM Trans. Comput. Syst. 7.2 (May 1989), pp. 184–215. ISSN: 0734-2071. DOI:
10.1145/63404.63407. URL: http://doi.acm.org/10.1145/63404.
63407.

[16] R. Fitzgerald and D. Tarditi. “The Case for Profile-directed Selection of Garbage
Collectors”. In: Proceedings of the 2nd International Symposium on Memory
Management. ISMM ’00. Minneapolis, Minnesota, USA: ACM, 2000, pp. 111–
120. ISBN: 1-58113-263-8. DOI: 10.1145/362422.362472. URL: http:
//doi.acm.org/10.1145/362422.362472.

[17] H.-J. Boehm, R. Atkinson, and M. Plass. “Ropes: an alternative to strings”. In:
Software: Practice and Experience 25.12 (1995), pp. 1315–1330.

[18] R. Hinze and R. Paterson. “Finger Trees: A Simple General-purpose Data
Structure”. In: J. Funct. Program. 16.2 (Mar. 2006), pp. 197–217. ISSN: 0956-
7968. DOI: 10.1017/S0956796805005769. URL: http://dx.doi.org/
10.1017/S0956796805005769.

[19] J. N. L’orange. RRB-Tree Performance in Real Applications. Tech. rep. NTNU,
Nov. 2013.

[20] P. Wadler. “Linear Types Can Change the World!” In: Programming Concepts
And Methods. North, 1990.

[21] S. Peyton Jones and S. Marlow. “Secrets of the Glasgow Haskell Compiler
inliner”. In: Journal of Functional Programming 12 (4-5 July 2002), pp. 393–
434. ISSN: 1469-7653. DOI: 10.1017/S0956796802004331. URL: http:
//journals.cambridge.org/article_S0956796802004331.

[22] C. Lattner and V. Adve. “LLVM: a compilation framework for lifelong program
analysis transformation”. In: Code Generation and Optimization, 2004. CGO
2004. International Symposium on. Mar. 2004, pp. 75–86. DOI: 10.1109/CGO.
2004.1281665.

[23] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Handbook: The Art
of Automatic Memory Management. 1st ed. Chapman and Hall/CRC, Aug. 2011.
ISBN: 9781420082791.

[24] D. R. Edelson. “Smart Pointers: They’re Smart, but They’re Not Pointers”. In:
USENIX C++ Conference. Portland, OR: USENIX, Aug. 1992.

http://dx.doi.org/10.1145/6138.6151
http://doi.acm.org/10.1145/6138.6151
http://dx.doi.org/10.1145/63404.63407
http://doi.acm.org/10.1145/63404.63407
http://doi.acm.org/10.1145/63404.63407
http://dx.doi.org/10.1145/362422.362472
http://doi.acm.org/10.1145/362422.362472
http://doi.acm.org/10.1145/362422.362472
http://dx.doi.org/10.1017/S0956796805005769
http://dx.doi.org/10.1017/S0956796805005769
http://dx.doi.org/10.1017/S0956796805005769
http://dx.doi.org/10.1017/S0956796802004331
http://journals.cambridge.org/article_S0956796802004331
http://journals.cambridge.org/article_S0956796802004331
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/CGO.2004.1281665

BIBLIOGRAPHY 114

[25] J. A. Stratton, C. Rodrigues, I.-J. Sung, L.-W. Chang, N. Anssari, G. Liu, W.-m. W.
Hwu, and N. Obeid. “Algorithm and data optimization techniques for scaling
to massively threaded systems”. In: Computer 45.8 (2012), pp. 26–32.

[26] S. F. Hummel, E. Schonberg, and L. E. Flynn. “Factoring: A Method for Schedul-
ing Parallel Loops”. In: Commun. ACM 35.8 (Aug. 1992), pp. 90–101.

[27] A. Prokopec, T. Rompf, P. Bagwell, and M. Odersky. On A Generic Parallel
Collection Framework. Tech. rep. EPFL, 2011.

[28] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. “Cilk: An Efficient Multithreaded Runtime System”. In: Proceedings
of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. PPOPP ’95. Santa Barbara, California, USA: ACM, 1995, pp. 207–
216.

[29] Oracle Corporation. Source code for OpenJDK 7u40 Build b43. Mercurial repos-
itory, revision 6506 at branch default. URL: http://hg.openjdk.java.
net/jdk7u/jdk7u40/jdk (visited on Dec. 16, 2013).

http://hg.openjdk.java.net/jdk7u/jdk7u40/jdk
http://hg.openjdk.java.net/jdk7u/jdk7u40/jdk

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Listings
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Terminology
	1.3 Purpose
	1.4 Organisation

	I Background
	2 Persistent Vectors
	2.1 History
	2.2 Introduction
	2.3 Radix Access
	2.4 Update
	2.5 Append
	2.6 Pop
	2.7 Tail
	2.8 Display
	2.9 Performance

	3 RRB-Trees
	3.1 Introduction
	3.2 Relaxed Radix Access
	3.3 Update
	3.4 Concatenation
	3.5 Slicing
	3.6 Performance

	4 Transience
	4.1 Definition
	4.2 Implementation
	4.3 Performance
	4.4 Related Work

	II Methodology
	5 Direct Append
	5.1 Introduction
	5.2 Implementation
	5.3 Direct Pop
	5.4 Performance
	5.5 Further Optimisations

	6 RRB-tree Tail
	6.1 Implementation
	6.2 Interference with Direct Append
	6.3 Display
	6.4 Performance

	7 RRB-tree Transience
	7.1 Introduction
	7.2 Implementation

	8 librrb and pgrep
	8.1 librrb
	8.2 pgrep

	III Results, Discussion and Conclusion
	9 Results and Discussion
	9.1 Practical
	9.2 Append Time
	9.3 Concatenation Time
	9.4 Overall Time
	9.5 Memory Usage

	10 Conclusion
	10.1 Future Work

	IV Appendices
	A Additional Functions
	A.1 Concatenation Functions
	A.2 Direct Append Helper Functions
	A.3 Direct Pop

	B Search Terms
	C Additional Plots
	D librrb Installation and Use
	D.1 Setup
	D.2 Options
	D.3 Interface

	Bibliography

